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This paper covers forecast management in decentralized supply chains. For various reasons, companies 

do not always agree to disclose their information. To deal with this issue, we consider a downstream 

demand inference (DDI) strategy in a two-level supply chain. DDI was assessed using different forecast- 

ing methods and was successfully tested using only a simple moving average. In an investigatory context 

using other forecasting methods, we propose the introduction of the weighted moving average method, 

which affects nonequal weights to past observations. First, we verify the unique propagation of demand 

processes. Second, we consider the forecast mean squared errors, the average inventory levels and the 

bullwhip effect as the supply performance metrics. Third, we formalize the manufacturer’s forecast opti- 

mization problem and apply Newton’s method to solve it. The optimization results, based on the simu- 

lated demands, confirm the effectiveness of our approach to produce further enhanced solutions and to 

improve the results of DDI. We have shown that a little change in the weights of the forecast method im- 

proves the competitiveness in the market. Conversely, the bullwhip effect is affected due to the nonequal 

weighting in the forecast method. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

The optimal supply chain performance requires the realization

f numerous actions. Regrettably, those actions are not always in

he best interest of the actors of the same supply chain. The supply

hain actors are mainly focused on achieving their own objectives

nd that self-serving focus often leads to poor performance. How-

ver, enhanced performance is achievable if the companies coordi-

ate their operations such that each company’s objectives become

ligned with the supply chain’s performance. 

Supply chain management is one of the most important

esearch areas that aims to improve the overall supply chain

erformance. More specifically, actors in supply chains are con-

inuously seeking to minimize their inventory levels, which are

ranslated into cost savings over time. In a decentralized two-level

upply chain consisting of a manufacturer and a retailer, the

anufacturer seeks to improve the quality of the forecast MSE

ith the objective of minimizing his average inventory levels.

n fact, information sharing presents a common approach to

eal with inventory reductions. On one side, a stream of papers
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 Cachon & Fisher, 20 0 0 ; Sahin & Robinson, 20 05 ; Yu, Yan & Edwin

heng, 2001 ) argued that information sharing can reduce the

nventory holdings, related costs and bullwhip effect occurring

n supply chains. Conversely, many researchers ( Fawcett, Oster-

aus, Magnan, Brau & McCarter, 2007 ; Forslund & Jonsson, 2007 ;

lein, Rai & Straub, 2007 ; Lee & Whang, 20 0 0 ; Mendelson, 20 0 0 )

lso argued that information sharing has a number of practi-

al limitations, such as confidential policies, data reliability and

he lack of information systems’ compatibility. Vosooghidizaji,

aghipour and Canel-Depitre (2019) considers different scenarios

herein asymmetric information cannot be shared with supply

hain partners because of many reasons that include “the fear

f losing competitive advantage, getting extra benefits, getting

 better price, maintaining one’s bargaining power, not being

ontrolled or dictated to by other parties, ensuring compatibility

f information systems, and other strategic reasons”. An actor not

haring information can affect the whole system of the supply

hain. It was also argued that, by revealing sensitive demand

nformation to the upstream manufacturer, a retailer may lose

ome advantage in future price negotiations ( Ha, Tong & Zhang,

010 ). Wal-Mart announced that it would no longer share its

nformation with other companies like Inc and AC Nielson as

al-Mart considers data to be a top priority and fears information

eakage ( Hays, 2004 ). In fact, depending on the nature and size

f supply chains, not sharing information can result to differ-
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ent levels of losses. William Wappler, President of Automotive

Technology Leader SURGER, says, "The automotive industry is es-

timated to lose annually more than 2 billion dollars in the supply

chain due to losses in inventory of containers, parts, finished ve-

hicles and logistical inefficiencies, through a notorious lack of visi-

bility and inherent control." He adds: “Most automotive companies

struggle to reduce supply chain costs year over year.” According

to their internal forecasts, the use of the proposed digital platform

can help participants achieve double-digit cost savings through

highly accurate supply chain visibility and the collaborative power

of shared information ( Henderson, 2018 ). Indeed, industries where

component suppliers need to build a high capacity in advance due

to short lead times, face high inventory costs because of uncertain

market demand. Generally, it has been accepted that the demand

is a private information of the retailers, that leads to problems of

management of the inventory at the upstream levels. 

Recently, a new coordination supply chain approach, known as

downstream demand inference (DDI), ( Ali & Boylan, 2012 ; Ali &

Boylan, 2011; Ali, Babai, Boylan & Syntetos, 2017 ; Tliche, Taghipour

& Canel-Depitre, 2019 ) emerged in the supply chain field. The DDI

strategy allows the enhancement of decentralized systems with-

out having to go through explicit demand information sharing. In-

stead of demand information sharing, the upstream actor can in-

fer the demand from the order history. The DDI strategy assumes

that the demand process and its parameters are known through-

out the two-level supply chain. The first part of the assumptions

– that is the retailer facing the customer’s demand is able to eas-

ily estimate the parameters of the process from his demand his-

tory – is evident. The second part of the assumptions – that is

the ability of the manufacturer to infer the process of the de-

mand occurring at the retailer – is subject of research and dis-

cussion in the literature. Ali and Boylan (2011) showed that DDI

cannot be applied with the optimal minimum mean squared error

(MMSE) forecast method because the propagation of the demand

may not be unique. Ali and Boylan (2012) also showed that DDI is

not possible with the single exponential smoothing (SES) method,

but only when the downstream actor uses the simple moving av-

erage (SMA) method that attaches equal weights to past obser-

vations. Ali et al. (2017) showed that DDI generally outperforms

the no information sharing (NIS) strategy in terms of the forecast’s

mean squared error ( MSE ) and inventory costs under the assump-

tion of an AR (1) demand model. Under the DDI strategy, Tliche et

al. (2019) considered the MS E DDI and average inventory level ( ̃ I DDI 
t )

as upstream supply chain performance metrics and generalized the

above results for causal invertible 1 ARMA ( p, q ) demand processes.

In a context of DDI strategy, this paper aims to further enhance the

DDI’s results by acquiring further optimized solutions in terms of

MSE and average inventory levels. 

A first possibility for improvement can be emphasized on the

forecasting method adopted in the DDI approach. Since the SMA

method is the only method of prediction up to now allowing the

inference of the downstream demand, we have thought to intro-

duce a variant of this method while keeping in mind the orien-

tation of improvement of the average inventory levels. The SMA

method is characterized by the equal weights associated to the N

past observations, to predict the future demand. Every time pe-

riod, the oldest demand observation is dropped out and exchanged

by the last demand observation. A first intuition is to disrupt the

weightings of the method in order to improve the performance.

In this way, the Weighted Moving Average (WMA) method was

selected in order to first investigate its feasibility in the DDI ap-

proach, and second to investigate whether any enhancement is
1 Please refer to Shumway and Stoffer (2011) for more details on ARMA models, 

causality and invertibility. 

t  

t

 

d  
chievable in a two-level supply chain. The WMA method is a sim-

le forecasting method, as well as the SMA method. The WMA

ethod attaches different weights/ponderations to the N past de-

and observations, and in the same way as SMA, the oldest de-

and observation is dropped out and exchanged by the last de-

and observation, every time period. The disruption’s possibility

f the weights in the method was an opening door for exploring

otential improvements in different directions. One of these direc-

ions is the optimization according to the upstream actor’s average

nventory levels. 

Consequently, acquiring further “optimized” solutions naturally

pens the line of our research to other branches of scientific re-

earch. Indeed, optimization plays a very important role in several

reas of application and especially in supply chain management.

mnipresent since the beginning of time, optimization is a math-

matical discipline, that has grown in importance during the 20th

entury. This is due to the development of industrial sciences, op-

rations planning (economics, management, logistics, scheduling),

merging technologies (automatic, electronic, electrotechnical, etc.)

nd computer science, which has made previously impassable nu-

erical resolution methods efficient. Mathematically, it consists of

inimizing, or maximizing, a function that represents an objective

o be achieved on a set called a "domain" or "set of feasible solu-

ions," which is defined as a set of constraints that are to be re-

pected. The objective is to find the best solution belonging to the

omain that acquires the optimal value of the objective function.

he nature of the objective function and the constraints defining

he domain determine the nature of the optimization problem and

he difficulty of its resolution. 

In this paper, instead of using the SMA method, we use the

eighted moving average (WMA) method, which attaches differ-

nt weights to the N past observations, and then re-establish the

anufacturer MS E DDI and 

˜ I DDI expressions according to a weight-

ng vector x . Second, we propose two measures to quantify the gap

eparating the adoption of the NIS strategy with the MMSE method

o the adoption of the DDI strategy with the WMA method on one

and, and on the second hand to quantify the gap separating the

doption of the DDI strategy with the SMA method to the adop-

ion of the DDI strategy with the WMA method, in terms of bull-

hip effect. Third, we mathematically formalize the manufacturer’s

orecast optimization problem (MFOP) and propose the application

f the well-known Newton’s method in order to obtain the opti-

al weighting vector x ∗. To the best of our knowledge, this paper

resents the first attempt to introduce Newton’s method into fore-

asts where the WMA method is adopted. The numerical results

f the MSE and 

˜ I t optimizations based on the simulated causal

nvertible ARMA ( p, q ) demand processes confirm the effectiveness

f this approach to produce further-optimized solutions compared

o NIS strategy with MMSE method and DDI strategy with SMA

ethod, and consequently to improve the competitiveness in the

arket. However, the WMA method affects the bullwhip effect

ince nonequal weights generate higher orders’ variability. It is

oncluded that if the supply chain is initially adopting a NIS strat-

gy where the MMSE method is used in the downstream forecasts,

he downstream actor is emphasized to consider a high value of

(beyond a certain break-point) in order to reduce the bullwhip

ffect. Else, if the supply chain is initially adopting a DDI strat-

gy where the SMA method is used in the downstream forecasts,

he upstream actor needs to use a reserve inventory in order to

over the amplified orders variations. Hence, we provide a devel-

ped picture of the DDI strategy’s adoption when the WMA is used

or demand forecasts and where the Newton’s method is employed

o quantify the weighting vector of the WMA method, according to

he minimization of the upstream average inventory levels. 

The rest of the paper is organized as follows. Section 2 is

evoted to the literature review. In Section 3 , we present
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he proposed modeling approach. Section 4 is devoted to the

mplementation, simulation and discussions. Finally, in Section 5 ,

e summarize the contributions, the results, the limitations and

erspectives. 

. Literature review 

Demand information sharing is one of the most important cata-

ysts leading to improvements in supply chains. Sharing customers’

emand information requires that upstream actors have access to

he demand data of their respective downstream actors. The need

or information sharing mechanisms, in order to extract demand

nformation has always been an open topic of discussion in the

iterature. Some researchers ( Chen, Drezner, Ryan & Simchi-Levi,

0 0 0b ; Lee, So & Tang, 20 0 0 ; Raghunathan, 20 03 ; Yu, Yan & Cheng,

002 ) argued that downstream actors need to share their demand

nformation with upstream actors in order to reduce the bullwhip

ffect. On the other hand, other researchers ( Gaur, Giloni & Se-

hadri, 2005 ; Gilbert, 2005 ; Raghunathan, 2001 ; Zhang, 2004 ) re-

ied on some strong arguments to show that the received orders

lready contain information about the customers’ demand process.

In a context of no information sharing policy, DDI appears to

e a novel collaboration management approach that allows the up-

tream actor to infer the demand of his formal downstream actors

ithout the need for information sharing mechanisms. According

o the DDI approach, the inventory level/cost savings from coordi-

ation and negotiation are possible if trust is established between

arties ( Ali et al., 2017 ; Tliche et al., 2019 ). 

The works of Ali and Boylan (2011) and Ali and Boylan

2012) have already shown that “DDI is not possible through SES or

ptimal MMSE methods, but only with nonoptimal SMA method”.

his is due to the nonfeasibility of DDI when the propagation

f the demand throughout the supply chain is not unique. Ali

t al. (2017) have investigated DDI using the SMA method for

n AR (1) demand model and conducted numerical analysis based

n real data. Based on simulations, Tliche et al. (2019) general-

zed DDI’s results for causal invertible ARMA ( p, q ) demand models

nd showed that this strategy reduces the bullwhip effect. Conse-

uently, it is still natural to explore the feasibility of DDI and the

mprovement of the results by using other forecasting methods.

t’s first about the margin of enhancement still existing between

he DDI strategy’s results and the forecast information sharing
Table 1 

Forecasting when DDI strategy is adopted. 

Forecasting method Mathematical expression 

MMSE f t+1 = E( D t+1 / { D t , D t−1 , . . . , D t−T

• { D t , D t−1 , . . . , D t−T } is the available set

history 

SES f t+1 = α
T ∑ 

j=0 

( 1 − α) j D t− j 

• { D t , D t−1 , . . . , D t−T } is the available set

history 

• α is the smoothing constant 

SMA 
f t+1 = 

1 

N 

N−1 ∑ 

j=0 

D t− j 

• N is the moving average horizon 

WMA f t+1 = 

N ∑ 

i =1 

x i D t+1 −i 

• N is the moving average horizon 

• x = ( x 1 , . . . , x N ) is the weighted vector

obtained using Newton’s method 

• 

⎧ ⎨ ⎩ 

N ∑ 

i =1 

x i = 1 

x i ≥ 0 ∀ i = 1 , . . . , N 
FIS) strategy’s results which corresponds to the centralized system

here the demand information is explicitly shared between actors.

herefore, exploring the DDI strategy by adopting simple forecast-

ng methods is still an interesting management research area for

oth researchers and practitioners. 

Forecasting in supply chains is an increasingly critical organi-

ational tool ( Sanders & Manrodt, 2003 ) for improving business

ompetitiveness. Ali and Boylan (2012) provided a summary of

he highly ranked forecasting methods according to their usage,

amiliarity and satisfaction among practitioners. Generally, sup-

ly chain decision-makers choose a forecasting method based on

ts simplicity. Especially, the SES, regression analysis (RA) and

MA methods are popular among forecasting managers for fa-

iliarity and satisfaction reasons. As reported in the works of

anders and Manrodt (1994) and Boylan and Johnston (2003) , be-

ause of their high difficulty and sophistication, optimal forecast-

ng methods are most often considered to be undeserving of ex-

ra effort. On the other hand, nonoptimal forecasting methods

re more intuitive, especially for those with limited mathematical

ackgrounds. In addition, Johnston, Boyland, Meadows and Shale

1999) showed that “the variance of the forecast error for the

onoptimal method SMA was typically 3% higher than the SES

ethod for an ARIMA ( 0 , 1 , 1 ) ”. 

In this paper, we examine the effects of employing a simple

onoptimal forecasting method, namely, the WMA, in the down-

tream actor’s forecasts, where demand follows a causal invertible

RMA ( p, q ) . The WMA is a method that is widely used in the in-

ustry literature ( Alsultanny, 2012 ; Eckhaus, 2010 ; Kalaoglu et al.,

015 ; Kapgate, 2014 ; Wang & Cheng, 2007 ; Wenxia, Feijia, Shuo,

un & Guodong, 2015 ). We selected the WMA method as a method

f interest because it belongs to the moving average methods, and

ore specifically a variant of the SMA method. The narrow dif-

erence in weights between the SMA and the WMA methods sug-

ested a potential feasibility (uniqueness of demand process prop-

gation) of the DDI approach in a decentralized supply chain. Such

s SMA method, the WMA method is based on the shifting for-

ard of the last N observations in order to predict the future. Ev-

ry time-period, the oldest observation is excluded and the most

ecent observation is included. 

Table. 1 summarizes the experimented forecasting methods in

he context a DDI strategy as well as our contribution. 
DDI feasibility Reference 

 

} ) Not feasible Ali and Boylan (2011) 

 of demand 

Not feasible Ali and Boylan (2012) 

 of demand 

Feasible Ali and Boylan (2012) 

Ali et al. (2017) 

Feasible This paper 

 that is 
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f

Thus, in this paper, we first show that demand inference is fea-

sible when the retailer uses the WMA method in his forecasts. The

upstream actor is then able to infer the demand arriving at his for-

mal downstream actor as the demand propagation is unique. Next,

the consideration of nonequal weights for the N past observations

in the WMA method, is achieved through the use of the Newton

optimization method aligned according to the minimization of the

MSE and thus according to the minimization of the upstream ac-

tor’s average inventory levels. In this way, this paper provides a

methodology that allows the reduction of the average inventory

level at the upstream actor. Since there are no specific “standard

approaches” for determining the optimal setting in terms of pa-

rameter N and lead-time L , we study the sensitivity of our ap-

proach’s results in comparison with the NIS strategy through the

MMSE method, and in comparison with the DDI strategy through

the SMA method. In addition, we present findings on the bullwhip

effect in order to obtain a clearer picture of this approach. 

3. Modeling approach 

We consider a simple two-level supply chain that is formed by

a manufacturer (upstream actor) and a retailer (downstream actor)

who receives the demand of a final customer. We suppose that

a periodic review system is adopted for replenishment in which

downstream actors place their orders with upstream actors after

examining their respective inventory levels. Indeed, after the re-

alization of demand D t by the retailer at the beginning of time

period t and after checking his own inventory level, the retailer

places an order Y t before the end of the period. Then, the manu-

facturer prepares the required order Y t and ships it to the retailer

who will receive it at period t + L + 1 . Here, L presents the replen-

ishment time of both production and shipment. Second, it is as-

sumed that there are no order costs. Second, the unit inventory

holding costs and shortage costs are constant and respectively de-

noted by h and s . It is also assumed that both the manufacturer

and retailer adopt an order-up-to (OUT) policy, which minimizes

the total costs over an infinite time horizon ( Lee et al., 20 0 0 ). 

These assumptions were adopted in many papers of this stream

of research ( Ali et al., 2017 ; Ali, Boylan & Syntetos, 2012 ; Hosoda

et al., 2008; Hosoda and Disney, 2006; Cheng and Wu., 2005; Al-

wan et al. , 2003; Chen et al., 20 0 0; Lee et al., 20 0 0 ; Raghunathan,

2001 ; Tliche et al., 2019 ) and we consider our paper is part of the

continuity of this stream of works. 

3.1. Customer’s demand model and forecast method 

Time-series processes have widely been adopted to model the

demand of many products in different fields. Let us assume that

the demand at the retailer is a causal invertible ARMA ( p, q ) pro-

cess. Let D t be this demand process at period t , which is expressed

by equation (1) as follows: 

D t = c + 

p ∑ 

j=1 

φ j D t− j + ξt + 

q ∑ 

j=1 

θ j ξt− j (1)

where 

c ≥ 0 is the unconditional mean of the demand process, 

φ j where j ∈ { 1 , .., p } is the autoregressive coefficient of the de-

mand process, 

θ j where j ∈ { 1 , .., q } is the moving average coefficient of the

demand process, and 

ξt N → ( 0 , σ 2 
ξ
) where t ∈ [ 0 , + ∞ ] is the independent and iden-

tically distributed error term that follows a normal distribution. 

Furthermore, let d t be the mean-centered demand process, μd 

be the unconditional mean of the demand process D t and γk =
ov ( D t+ k , D t ) be the covariance between demands at periods t
nd t + k . These definitions are required for the formulas’ deriva-

ions in this work. 

In addition, as mentioned above, we will consider that the re-

ailer adopts the WMA method in the demand forecasts, which, at

eriod t + 1 , is mathematically written as equation (2) : 

f t+1 = 

N ∑ 

i =1 

x i D t+1 −i (2)

here x i is the weight that is associated with the customer’s de-

and occurring at time period t + 1 − i , which verifies the set of

onstraints (C) : { 
N ∑ 

i =1 

x i = 1 

x i ≥ 0 ∀ i ∈ { 1 , . . . , N } 
, and let x = ( 

x 1 
: 

x N 

) be the

eighting vector. 

To apply DDI strategy, it is first important to check whether the

ropagation of the demand across the supply chain is unique. 

.2. Downstream actor’s orders time-series structure 

Let Y t be the order process arriving at the manufacturer at pe-

iod t , which is expressed by equation (3) as follows: 

 t = c + 

p ∑ 

j=1 

φ j Y t− j + 

˜ ξt + 

q ∑ 

j=1 

θ j ̃
 ξt− j (3)

here 

c ≥ 0 is the unconditional mean of the order process, 

φ j where j ∈ { 1 , .., p } is the autoregressive coefficient of the or-

er process, 

θ j where j ∈ { 1 , .., q } is the moving average coefficient of the

rder process, and 

˜ ξt → N( 0 , [ L 2 ( x 2 
1 

+ x 2 
N 

+ 

N−1 ∑ 

i =1 

( x i +1 − x i ) 
2 ) + 2 L x 1 + 1 ] σ 2 

ξ
) where

 0 , + ∞ ] is the independently and identically distributed error term

hat follows a normal distribution. 

The demand and order processes have the same autore-

ressive and moving average coefficients, and they differ only

y their respective error terms (see Appendix A). Indeed,

he order’s error terms are amplified by a coefficient β =
 

2 ( x 2 
1 

+ x 2 
N 

+ 

N−1 ∑ 

i =1 

( x i +1 − x i ) 
2 ) + 2 L x 1 + 1 such as σ 2 

˜ ξ
= βσ 2 

ξ
. Conse-

uently, the order process is unique and the upstream actor is

ble to infer the demand process without the need for demand

nformation sharing. Next, we derive the manufacturer’s forecast

S E DDI and 

˜ I DDI when the WMA method is used in a context of

 DDI strategy. The performance metrics MS E DDI and 

˜ I DDI are con-

idered since they are the first direct measures impacted by de-

and inference. Indeed, the upstream actor benefits from the DDI

trategy that enables the reduction of the MSE and the average in-

entory level. The next consequence is then the reduction of the

nventory costs related to these metrics’ enhancements. 

.3. Derivation of the manufacturer’s mean squared error and 

verage inventory level expressions 

Since the forecast expression in equation (2) is a function of

he weights, the MS E DDI and 

˜ I DDI 
t expressions are also functions of

hese weights. We derive the MS E DDI (x ) and 

˜ I DDI 
t (x ) expressions as

ollows: 

MS E DDI = V ar 

[ 

L +1 ∑ 

i =1 

( D t+ i − f t+ i ) 

] 

= V ar 

[ 

L +1 ∑ 

i =1 

D t+ i − ( L + 1 ) f t+1 

] 

⇔ MS E DDI = V ar 

( 

L +1 ∑ 

i =1 

D t+ i 

) 

+ ( L + 1 ) 
2 V ar ( f t+1 ) 
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− 2 ( L + 1 ) Cov 

( 

L +1 ∑ 

i =1 

D t+ i , f t+1 

) 

(4a) 

We then derive the three components of Eq. (4a) (see Appendix

) and obtain the final expression of Eq. (4) as follows: 

MS E 

DDI ( x ) 

= ( L + 1 ) γ0 + 2 

L ∑ 

i =1 

i γL+1 −i 

+ ( L + 1 ) 
2 

[ 

γ0 

N ∑ 

i =1 

x i 
2 + 2 

N−1 ∑ 

j=1 

( 

x j 

N ∑ 

i = j+1 

x i γi − j 

) ] 

− 2 ( L + 1 ) 

L+1 ∑ 

i =1 

N ∑ 

j=1 

x j γi + j−1 (4) 

Next, the general expression of the average inventory level un-

er an OUT policy is given by Ali et al. (2012) and mathematically

ritten as Eq. (5a) as follows: 

˜ 
 t = T t − E 

( 

L +1 ∑ 

i =1 

Y t+ i 

) 

+ 

E ( Y t ) 

2 

(5a) 

here Y t is the order process of the retailer arriving at the man-

facturer at time period t; the manufacturer’s optimal OUT in-

entory level T t is expressed by T t = M t + K σ ˜ ξ

√ 

V , where M t and

 are respectively the conditional expectation and the conditional 

ariance of the total demand over the lead-time plus one review

ime unit; and K = F −1 
N( 0 , 1 ) 

( s 
s + h ) is the inverse distribution function

or the standard normal distribution that is calculated at the ratio

oint s 
s + h . 

Consequently, under the DDI strategy and using the WMA

ethod for the demand forecasts, we obtain Eq. (5b) as follows:

˜ 
 

DDI 
t ( x ) = T DDI 

t ( x ) − E 

( 

L +1 ∑ 

i =1 

Y t+ i 

) 

+ 

E ( Y t ) 

2 

(5b) 

here T DDI 
t (x ) = M t 

DDI (x ) + K σ ˜ ξ

√ 

V DDI (x ) 

Then, the Eq. (5b) is equivalent to the following Eq. (5c) : 

˜ 
 

DDI 
t ( x ) = M t 

DDI 
( x ) + K σ ˜ ξ

√ 

V 

DDI ( x ) − E 

( 

L +1 ∑ 

i =1 

Y t+ i 

) 

+ 

E ( Y t ) 

2 

(5c)

We then derive the four components of equation ( 5 c ) (see Ap-

endix C), and thus, we obtain the final expression of equation

5) as follows: 

˜ 
 

DDI 
t ( x ) = 

c 

2 

(
1 −∑ p 

j=1 
φ j 

) + K σ ˜ ξ

√ 

MS E DDI ( x ) (5) 

We note that ˜ I DDI 
t (x ) in equation (5) is a nonlinear function of

S E DDI (x ) , which can explain the nonproportional evolution link-

ng these two performance metrics. Next, we proceed to deriving

he resulting bullwhip effect in order to compare the processes

ariations’ evolution with the cases where the NIS strategy with

he MMSE is adopted, and then to compare it with the case where

he DDI strategy with the SMA method is adopted. 

.4. Bullwhip effect 

In this subsection, we are interested in studying the bullwhip

ffect occurring in the considered supply chain. Let ˜ ψ j , ̃
 ˜ ψ j and 

˜ ˜ ˜ ψ j 

e the infinite moving average representation (IMAR) coefficients

f the orders processes in the cases where the WMA, SMA and

MSE methods are adopted for the demand forecasts, respectively.
First, when the WMA method is used in order to fore-

ast the customer’s demand, the ARMA ( p, q ) demand process at

he retailer where ξt is the error term that transforms into

n ARMA ( p, q ) order process at the manufacturer, where 

 

ξ t =
 [ 

N ∑ 

i =1 

x i ( ξt−i −1 − ξt−i ) + ξt ] is the error term. Considering the lead-

ime L , the parameter N and the IMAR coefficients ψ j and 

˜ ψ j of

he demand and order processes, respectively, the bullwhip effect

s measured by Eq. (6) as follows: 

BW e f f ec t W MA ( x ) = 

V ar ( Y t ) 

V ar ( D t ) 

= 

[ 

L 2 

( 

x 2 1 + x 2 N + 

N−1 ∑ 

i =1 

( x i +1 − x i ) 
2 

) 

+ 2 L x 1 + 1 

] ( ∑ + ∞ 

j=0 
˜ ψ 

2 
j ∑ + ∞ 

j=0 ψ j 
2 

) 

(6) 

Second, when the SMA forecasting method is adopted, the

RMA ( p, q ) demand process for the retailer where ξt is the error

erm transforms into an ARMA ( p, q ) order process at the manufac-

urer, where ̃
 ˜ ξ t = ( L N + 1 ) ξt − L 

N ξt−N is the error term ( Tliche et al.,

019 ). Considering the lead-time L , the parameter N and the IMAR

oefficients ψ j and 

˜ ˜ ψ j of the demand and order processes, respec-

ively, the bullwhip effect is measured by equation (7) as follows:

W e f f ec t SMA = 

V ar ( Y t ) 

V ar ( D t ) 
= 

2 L 2 + N 

2 + 2 NL 

N 

2 

⎛ ⎝ 

∑ + ∞ 

j=0 ̃
 ˜ ψ 

2 

j ∑ + ∞ 

j=0 ψ j 
2 

⎞ ⎠ (7) 

Third, when the MMSE forecasting method is adopted by the

etailer, the ARMA ( p, q ) process at the retailer transforms into

n ARM A ( p, M ax ( p, q − L ) ) process at the producer ( Zhang, 2004 ).

onsidering the IMAR coefficients of demand and orders processes,

espectively, ψ j and 

˜ ˜ ˜ ψ j , the ratio of the unconditional variance of 

he orders process to that of demand process, namely the Bullwhip

ffect is measured by equation (8) as follows: 

W e f f ec t M M SE = 

V ar ( Y t ) 

V ar ( D t ) 
= 

( 

L ∑ 

j=0 

ψ j 

) 2 
⎛ ⎝ 

∑ + ∞ 

j=0 ̃

 ˜ ˜ ψ 

2 

j ∑ + ∞ 

j=0 ψ j 
2 

⎞ ⎠ (8) 

Furthermore, considering the obtained expressions of Eqs. (6) ,

 7 ) and ( 8 ), we simply consider the ratio of BW e f f ec t W MA to

W e f f ec t M M SE and the ratio BW e f f ec t W MA to BW e f f ec t SMA . In this

anner, we obtain ideas about how the bullwhip effect behaves

hen switching from a NIS strategy with the MMSE method to a

DI strategy with the WMA method ( case 1 ), and when switching

rom a DDI strategy with the SMA method to a DDI strategy with

he WMA method ( case 2 ). Let denote the bullwhip effect evolu-

ion of the case 1 by BE E W MA 
M M SE , which is expressed by Eq. (9) as

ollows: 

BE E W MA 
M M SE = 

BW e f f ec t W MA ( x ) 

BW e f f ec t M M SE 

= 

[
L 2 
(
x 2 1 + x 2 N + 

∑ N−1 
i =1 ( x i +1 − x i ) 

2 
)

+ 2 L x 1 + 1 

](∑ L 
j=0 ψ j 

)2 

⎛ ⎝ 

∑ + ∞ 

j=0 
˜ ψ 

2 
j ∑ + ∞ 

j=0 ̃

 ˜ ˜ ψ 

2 

j 

⎞ ⎠ 

(9) 

Now, let denote the bullwhip effect evolution of the case 2 by

E E W MA 
SMA 

, which is expressed by Eq. (10a) as follows: 

E E W MA 
SMA = 

BW e f f ec t W MA 

BW e f f ec t SMA 
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⇔
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a

 

s  

r  
= 

N 

2 
[
L 2 
(
x 2 1 + x 2 N + 

∑ N−1 
i =1 ( x i +1 − x i ) 

2 
)

+ 2 L x 1 + 1 

]
2 L 2 + N 

2 + 2 NL 

⎛ ⎝ 

∑ + ∞ 

j=0 
˜ ψ 

2 
j ∑ + ∞ 

j=0 ̃
 ˜ ψ 

2 

j 

⎞⎠
(10a)

We note here that ˜ ψ j are equal to 
˜ ˜ ψ j for j from 0 to + ∞ since

the order processes Y t keep the same coefficients φ j and θ j of the

demand processes in the cases where WMA and SMA methods

are adopted, respectively. Indeed, the only difference between the

two structures of Y t is in the error terms. Hence, equation (10a) is

equivalent to: 

BE E W MA 
SMA = 

BW e f f ec t W MA 

BW e f f ec t SMA 

= 

N 

2 
[
L 2 
(
x 2 1 + x 2 N + 

∑ N−1 
i =1 ( x i +1 − x i ) 

2 
)

+ 2 L x 1 + 1 

]
2 L 2 + N 

2 + 2 NL 
(10)

The mathematical expression of Eq. (10) is not a linear func-

tion. Studying this equation is not a straightforward task since it

does not allow one to understand the domains in which BE E W MA 
SMA 

is inferior or superior to 1. Therefore, we suggest some simulations

for this metric in Section 4 to have an approximate idea of the gap

of the bullwhip effect, such as separating the situations in which

WMA and SMA are adopted. Note that BE E W MA 
SMA 

will be noted by

BE E W MA/Newton 
SMA 

since the vector x in the simulation section is the

Newton’s optimal weighting. 

Once the analytical expressions for the different supply chain

performance metrics are derived, we proceed to detail the problem

model and the resolution method. 

3.5. Newton method for optimal weighting 

We assume that the manufacturer aims to minimize his aver-

age inventory level when forecasting over the time period L + 1 . In

this work, this inventory-oriented enhancement is the main engine

of the supply chain surplus. Indeed, if the possibility of inventory

level minimization still exists, then the value of this gap is con-

vertible to a monetary value that can be shared across the supply

chain. To do this, since the inventory expression in equation (5) is

a function of the MSE, the manufacturer is recommended to simply

determine the weighting vector x ∗ that minimizes this MSE. Then,

the expression of the MS E DDI (x ) in Eq. (4) is replaced by the ob-

tained value MS E DDI ( x ∗) , and the optimal average inventory level
˜ I DDI 
t ( x ∗) is then determined. Let us first define the MFOP, which

can be expressed as follows: 

( MF OP ) : 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

minimize MS E DDI ( x ) 

sub ject to 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

N ∑ 

i =1 

x i = 1 

x i ≥ 0 ∀ i ∈ { 1 , . . . , N } 

x = 

( 

x 1 
: 

x N 

) 

There are several methods that can be applied to solve such

problems. In this paper, we select the Newton’s method, a

gradient-based iterative optimization algorithm that is widely used

in the literature because of its ease of implementation and quick-

ness of resolution since the convergence is quadratic ( Qi & Sun,

1999 ). For a positive quadratic convex function defined on R , the

minimum is reached if the derivative function is equal to 0 and

the second derivative function is positive on R . We then talk about

the 1st order and 2nd order optimality conditions. The Newton’s

method is suitable for the optimization in this setting because of

the mathematical nature of the MSE. Indeed, the MSE is positive
nd of quadratic convex nature defined on R 

n . The 1st optimal-

ty conditions (considering the constraints of the weights) are pre-

ented by the KKT formulation shown next. The 2nd optimality

onditions (always considering the constraints of the weights) are

resented by the Hessian matrix ∇g( 
x k 

λk ) also shown next, which

ust be a semi-definite positive matrix. This statement is not ev-

dent because of the complexity of the matrix components. How-

ver, a matrix is semi-definite positive if and only if all of its eigen-

alues are non-negative ( Vandenberghe & Boyd, 1996 ). In practice,

e verified this condition in our simulations. 

For the purpose, we go on to state our resolution methodology.

e first modify the constraints’ form of the MFOP into a matrix

orm and then the problem is rewritten as follows: 

( MF OP ) : 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

minimize MS E DDI ( x ) 

s.t. 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

x e t ≤ 1 

−x e t ≤ −1 

−x i ≤ 0 ∀ i ∈ { 1 , . . . , N } 
e = 

( 

1 

: 
1 

) 

[ N, 1 ] 

x = 

( 

x 1 
: 

x N 

) 

 ( MF OP ) : 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

s.t. 

minimize MS E DDI ( x ) ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

A x ≤ b, A = 

( 

e t 

−e t 

−I N 

) 

[ N+2 ,N ] 

and 

b = 

( 

1 

−1 

0 N 

) 

[ N+2 , 1 ] 

e = 

( 

1 

: 
1 

) 

[ N, 1 ] 

, 0 N = 

( 

0 

: 
0 

) 

[ N, 1 ] 

, 

I N = 

⎛ ⎝ 

1 0 0 

0 

. . . 0 

0 0 1 

⎞ ⎠ 

[ N,N ] 

x = 

( 

x 1 
: 

x N 

) 

We first define the necessary Karush-Kuhn-Tucker (KKT) first

rder optimality conditions that are associated with this problem

s follows ( Gordon & Tibshirani, 2012 ): 

( K K T ) : 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

( 1 ) : 
∂MS E DDI ( x ) 

∂x 
+ A 

t λ = 0 N 

( 2 ) : λi ( Ax − b ) i = 0 , i ∈ { 1 , . . . , r } 

s.t. 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

Ax ≤ b 

λi ≥ 0 , i ∈ { 1 , . . . , r } 
r = N + 2 

x = 

( 

x 1 
: 

x N 

) 

λ = 

( 

λ1 

: 
λr 

) 

We note here that λi is simply a parameter of the constraints’

atisfaction and is not related to our analysis. Next, in order to de-

ive ∂MS E DDI (x ) 
∂x 

, the MS E DDI (x ) function must be rearranged in the
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ollowing form: 

S E DDI ( x ) = ( L + 1 ) 
2 γ0 

N ∑ 

i =1 

x i 
2 + 2 ( L + 1 ) 

2 
N−1 ∑ 

j=1 

( 

x j 

N ∑ 

i = j+1 

x i γi − j 

) 

− 2 ( L + 1 ) 

L +1 ∑ 

i =1 

N ∑ 

j=1 

x j γi + j−1 + ( L + 1 ) γ0 + 2 

L ∑ 

i =1 

i γL +1 −i 

We separate the four components of the rearranged MS E DDI (x )

xpression, and we denote them as follows: 

 1 ( x ) = ( L + 1 ) 
2 γ0 

N ∑ 

i =1 

x i 
2 = ( L + 1 ) 

2 γ0 x I N x 
t 

 2 ( x ) = 2 ( L + 1 ) 
2 

N−1 ∑ 

j=1 

( 

x j 

N ∑ 

i = j+1 

x i γi − j 

) 

 3 ( x ) = −2 ( L + 1 ) 

L +1 ∑ 

i =1 

N ∑ 

j=1 

x j γi + j−1 = −2 ( L + 1 ) 

( 

L +1 ∑ 

i =1 

Y 

t 
i 

) 

x 

here Y i = 

⎡ ⎢ ⎣ 

γi 

: 

: 

γi + N−1 

⎤ ⎥ ⎦ 

, i = 1 , . . . , L + 1 

 4 ( x ) = ( L + 1 ) γ0 + 2 

L ∑ 

i =1 

i γL +1 −i 

We then derive the derivative functions of the four MS E DDI (x )

omponents as follows: 

∂ C 1 ( x ) 

∂x 
= 2 ( L + 1 ) 

2 γ0 I N x, 

∂ C 2 ( x ) 

∂x 
= 2 ( L + 1 ) 

2 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

N ∑ 

i = 1 

i � = 1 

x i γ| i −1 | 

: 
: 

N ∑ 

i = 1 

i � = N 

x i γ| i −N | 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

∂ C 3 ( x ) 

∂x 
= −2 ( L + 1 ) Y 

t 

here 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

L +1 ∑ 

i =1 

γi 

: 
: 

L + N ∑ 

i = N 
γi 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

nd 

∂ C 4 ( x ) 

∂x 
= 0 N . 

Then, the derivative function of MS E DDI (x ) is finally expressed

s follows: 

∂MS E DDI ( x ) 
∂x 
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

2 ( L + 1 ) 
2 

⎛ ⎜ ⎜ ⎝ 

γ0 x 1 + 

N ∑ 

i =1 

i � =1 

x i γ| i −1 | 

⎞ ⎟ ⎟ ⎠ 

− 2 ( L + 1 ) 
L +1 ∑ 

i =1 

γi 

: 
: 
: 

2 ( L + 1 ) 
2 

⎛ ⎜ ⎜ ⎝ 

γ0 x N + 

N ∑ 

i =1 

i � = N 

x i γ| i −N | 

⎞ ⎟ ⎟ ⎠ 

− 2 ( L + 1 ) 
L + N ∑ 

i = N 
γi 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

[ N, 1 ] 

In a second step, we denote G (x ) = 

∂MS E DDI (x ) 
∂x 

+ A 

t λ, and then

 K T is equivalent to the following nonlinear equations system

NLS): 

( NLS ) : 

{
G ( x, λ) = 0 N 

λi ( b − Ax ) i = 0 , λi ≥ 0 , ( b − Ax ) i ≥ 0 , i ∈ { 1 , . . . , r } 
roposition ( Chen, Chen & Kanzow, 20 0 0a ): 

If a ≥ 0 and b ≥ 0 , then ab = 0 ⇔ ϕ( a, b ) = 0 with ϕ( a, b ) =
 + b −

√ 

a 2 + b 2 . 

By applying the Proposition to ( NLS ) , we obtain the following

ystem ( NL S ′ ) : 

NL S ′ 
)

: 

⎧ ⎨ ⎩ 

G ( x, λ) = 0 N 

ψ i ( λi , ( b − Ax ) i ) = λi + ( b − Ax ) i −
√ 

λi 
2 + ( b − Ax ) i 

2 

= 0 , i ∈ { 1 , . . . , r } 
Next, let g( 

x 

λ
) = ( 

G ( x, λ) 

ψ( x, λ) 
) = 0 N+ r . Consequently, solving ( NL S ′ )

equires solving the following nonlinear equation (S) : 

( S ) : 

(
x k +1 

λk +1 

)
= 

(
x k 

λk 

)
− ∇ g −1 

(
x k 

λk 

)
.g 

(
x k 

λk 

)
The resolution of such an equation requires the computation

f the inverse of the Hessian matrix ∇ g −1 ( 
x k 

λk ) at each iteration k ,

hich could be expensive in terms of time and memory. The best

olution is then to solve a linear system using the Pivot-Gauss

ethod ( Sorensen, 1985 ). For any linear system of the form Ax =
, the Pivot-Gauss method consists of staggering the system by

aking changes to the rows of matrix A of the type L i ← L i + αL j 
o obtain the solution at the end a triangular matrix . Finally, solv-

ng (S) amounts to solving the following linear equations system

LS): 

( LS ) : ∇g 

(
x k 

λk 

)
. �u 

k = −g 

(
x k 

λk 

)
here �u k = ( 

�x k 

�λk ) = ( 
x k +1 − x k 

λk +1 − λk ) and 

g 

(
x k 

λk 

)
= 

[ 

∂G ( x k , λk ) 
∂x 

∂G ( x k , λk ) 
∂λ

∂ψ ( x k , λk ) 
∂x 

∂ψ ( x k , λk ) 
∂λ

] 

[ N + r, N + r ] 
ith 

∂G 

(
x k , λk 

)
∂x 

= 

∂ 2 MS E DDI 
(
x k 
)

∂ x 2 

= 

⎡ ⎢ ⎣ 

2 ( L + 1 ) 
2 γ0 · · · 2 ( L + 1 ) 

2 γ| 1 −N | 
. . . 

. . . 
. . . 

2 ( L + 1 ) 
2 γ| N−1 | · · · 2 ( L + 1 ) 

2 γ0 

⎤ ⎥ ⎦ 

, 

∂G 

(
x k , λk 

)
= A 

t , 

∂λ
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∂ψ 

(
x k , λk 

)
∂x 

= −A + 

(
b − A x k 

)
i 
A √ (

λk 
i 

)2 + 

(
b − A x k 

)2 

i 

∂ψ 

(
x k , λk 

)
∂λ

= 

( 

1 − λi (
λk 

i 

)2 + 

(
b − A x k 

)2 

i 

) 

I ( r,r ) 

In this section, we established the transformation of the

quadratic problem MFOP into a system of linear equations ( LS ) .

The use of the Pivot-Gauss method allows for the reduction of the

execution time that is necessary to obtain the Newton’s results. 

We conclude this section by summarizing the collaborative pro-

cess in the considered supply chain. The manufacturer signs an

income-sharing contract with the retailer. The latter agrees to

adopt the WMA/Newton method in his demand forecasting, thus

allowing the demand inference at the manufacturer. The manufac-

turer implements the Newton’s method to obtain the optimal al-

location vector according to his average inventory level. Once the

system ( LS ) is solved, the manufacturer passes the information

on the allocation vector to the retailer who will implement this

weighting in his WMA forecasting method. The reduction of the

MSE and consequently the average inventory level at the manufac-

turer, generates savings that will be shared with the retailer. 

4. Simulation results and discussion 

In this section, we carry out some simulated experiments of our

implementation, namely, the resolution of some examples that will

serve to validate the approach. Then, we discuss the observed re-

sults compared to the NIS strategy with the MMSE method and

compared to the DDI strategy with the SMA method. 

4.1. Implementation of newton’s method 

Using the MATLAB software, we implemented the Newton’s

method for solving a quadratic problem under linear constraints.

We adapted the general form of the quadratic problem to coincide

with our MFOP and then conducted simulations by solving some

problems using different predefined demand processes. The pseu-

docode of the Newton’s algorithm is shown as follows: 

Newton’s algorithm: 

➢ Input of the problem data N, L, A, b and γi for i ∈ { 1 , . . . , N + L } 
➢ Input of the algorithm parameters: 

i max ( maximal iterations number ) and ε ( maximal accepted error ) 

➢ Entry of the initial estimates: k = 0 , x 0 = ( 

x 0 1 

: 

x 0 N 

) and λ0 = ( 

λ0 
1 

: 

λ0 
r 

) 

➢ While g( 
x k 

λk ) ≥ ε or 
x k +1 − x k 

λk +1 − λk ≥ ε or k < i max 

� Compute g( 
x k 

λk ) and ∇g( 
x k 

λk ) 

� Solve ∇g( 
x k 

λk ) . �u k = −g( 
x k 

λk ) using the Pivot-Gauss method and deduce 

( 
x k +1 

λk +1 ) = ( 
x k 

λk ) + �u k = ( 
x k 

λk ) + ( 
�x k 

�λk ) 

� k = k + 1 

End 

➢ If k = i max , then the algorithm diverges and it will be necessary to change 

the initial point x 0 . 

4.2. Simulation experiments 

In this first part of the simulation, we consider the demand

models in, which are causal invertible ARMA ( p, q ) models, and we

vary the autoregressive parameters φ j where j = 1 , . . . , p and the
oving average parameters θ j where j = 1 , . . . , q . Since it is im-

ossible to infinitely compute the IMAR coefficients, we only com-

ute the first 10 0 0 ψ-weights for all simulated ARMA ( p, q ) de-

and processes. Then, we conduct comparative studies between

he cases where NIS with MMSE and DDI with WMA/Newton,

nd a comparative study between the cases where DDI with

MA/Newton method and DDI with SMA method, for the fol-

owing fixed parameters: c = 10 , σ 2 
ξ

= 1 , L = 5 , N = 12 , h =
 , and s = 2 . The optimal ponderation vector is obtained by ap-

lying the Newton’s method. The chosen parameters of Newton’s

lgorithm are as follows: ε = 10 −5 and i max = 100 . The initial solu-

ion can be arbitrarily chosen as long as it is in the realm of fea-

ible solutions. The eigenvalues of the Hessian matrix are positive

nd for different initial solutions corresponding to multiple simula-

ions on the same problem, the optimal solution is always unique.

his ensures the global optimality of the Newton’s solution. Finally,

he Newton’s algorithm does not exceed a dozen iterations and the

lapsed time is on the scale of a second using the Windows 7 pro-

essional operating system. 

.3. Comparative studies 

The following tables present the findings of our simulations

n 20 different demand models. We selected 20 different demand

odels used in the simulation for the simple reason of multiple

llustrations, where we variate autoregressive and moving average

arameters of the demand processes. Multiple simulations procure

ore credibility about the robustness of results. Table 2 shows

he coefficients of the demand processes and the obtained New-

on’s optimal weights for the N past observations. Table 3 shows

he simulation results of the MSE and 

˜ I t , respectively, when the

IS strategy is adopted, when the DDI strategy with the SMA

ethod is adopted, and finally when the DDI strategy with the

MA/Newton method is adopted. 

Table 3 reports two important results. The first one is that

his table exhibits the effectiveness of the DDI strategy with

MA/Newton compared to the NIS approach. Therefore, the DDI

trategy remains valuable when there is no information sharing

echanisms, regardless of the used forecasting method. Besides,

ased on simulated models in Table 3 , the WMA method with the

ewton’s allocation proves its efficiency by outperforming the SMA

ethod with regards to the two performance metrics. It’s about

he second result where this table proves that decision-makers

n supply chains can enhance their DDI performance and market

ompetitiveness by simply considering the optimal weighting that

s generated by Newton’s method, rather than considering an eq-

itable weighting of the order of 1 /N. As expected, the enhance-

ent of the two metrics is different when we vary the autoregres-

ive and the moving average parameters of the demand processes.

his is due to the nonlinear relation mentioned above in equation

5) that connects the forecast MSE to its effective consequence, the

verage inventory level. 

Besides, since there are no specific “standard approaches” for

etermining the best configuration, and for investigation purposes,

e study in the next subsection the sensibility of these metrics

ccording to the lead-time L and moving average parameter N val-

es. For illustration purposes, we consider an arbitrary example of

n ARMA ( 3 , 2 ) demand process, which is defined as follows: 

 t = 10 + 0 . 6 D t−1 + 0 . 4 D t−1 − 0 . 3 D t−1 + ξt + 0 . 1 ξt−1 + 0 . 08 ξt−2 

.3.1. Comparison between the ddi strategy with WMA/Newton 

ethod and the nis with mmse method with respect to lead time 

nd moving average parameters 

Based on the comparison between DDI with WMA/Newton re-

ults and NIS with MMSE results, we study the sensibilities of the
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Table 2 

Optimal Newton’s weights for ARMA ( p, q ) demand models . 

Demand model Autoregressive and moving 

average coefficients 

Newton weights vector x ∗

1 φ1 = 0 . 400 

(
0 . 2218 ; 0 . 0667 ; 0 . 0667 ; 0 . 0667 ; 0 . 0667 ; 0 . 0667 ;
0 . 0667 ; 0 . 0667 ; 0 . 0667 ; 0 . 0667 ; 0 . 0667 ; 0 . 1112 

)
2 φ1 = 0 . 500 

(
0 . 2835 ; 0 . 0597 ; 0 . 0597 ; 0 . 0597 ; 0 . 0597 ; 0 . 0597 ;
0 . 0597 ; 0 . 0597 ; 0 . 0597 ; 0 . 0597 ; 0 . 0597 ; 0 . 1194 

)
3 φ1 = 0 . 600 

(
0 . 3653 ; 0 . 0508 ; 0 . 0508 ; 0 . 0508 ; 0 . 0508 ; 0 . 0508 ;
0 . 0508 ; 0 . 0508 ; 0 . 0508 ; 0 . 0508 ; 0 . 0508 ; 0 . 1269 

)
4 θ1 = 0 . 400 

(
0 . 1727 ; 0 . 0370 ; 0 . 0913 ; 0 . 0696 ; 0 . 0782 ; 0 . 0749 ;
0 . 0758 ; 0 . 0764 ; 0 . 0739 ; 0 . 0806 ; 0 . 0636 ; 0 . 1061 

)
5 θ1 = 0 . 500 

(
0 . 1952 ; 0 . 0143 ; 0 . 1046 ; 0 . 0596 ; 0 . 0818 ; 0 . 0714 ;
0 . 0753 ; 0 . 0760 ; 0 . 0704 ; 0 . 0837 ; 0 . 0560 ; 0 . 1118 

)
6 θ1 = 0 . 600 

(
0 . 2116 ; 0 . 0 0 0 0 ; 0 . 1171 ; 0 . 0467 ; 0 . 0880 ; 0 . 0659 ;
0 . 0756 ; 0 . 0756 ; 0 . 0659 ; 0 . 0880 ; 0 . 0476 ; 0 . 1171 

)
7 

φ1 = 0 . 400 

θ1 = 0 . 051 

(
0 . 2397 ; 0 . 0567 ; 0 . 0661 ; 0 . 0656 ; 0 . 0656 ; 0 . 0656 ;
0 . 0656 ; 0 . 0656 ; 0 . 0656 ; 0 . 0657 ; 0 . 0631 ; 0 . 1149 

)
8 

φ1 = 0 . 400 

θ1 = 0 . 100 

(
0 . 2569 ; 0 . 0455 ; 0 . 0666 ; 0 . 0645 ; 0 . 0647 ; 0 . 0647 ;
0 . 0647 ; 0 . 0647 ; 0 . 0646 ; 0 . 0652 ; 0 . 0593 ; 0 . 1186 

)
9 

φ1 = 0 . 400 

θ1 = 0 . 300 

(
0 . 3186 ; 0 . 0 0 0 0 ; 0 . 0752 ; 0 . 0575 ; 0 . 0628 ; 0 . 0613 ;
0 . 0615 ; 0 . 0621 ; 0 . 0596 ; 0 . 0680 ; 0 . 0400 ; 0 . 1334 

)

10 

φ1 = 0 . 400 

θ1 = 0 . 300 

θ2 = 0 . 100 

(
0 . 3550 ; 0 . 0 0 0 0 ; 0 . 0449 ; 0 . 0692 ; 0 . 0574 ; 0 . 0586 ;
0 . 0593 ; 0 . 0585 ; 0 . 0616 ; 0 . 0565 ; 0 . 0413 ; 0 . 1378 

)

11 

φ1 = 0 . 400 

θ1 = 0 . 300 

θ2 = 0 . 150 

(
0 . 3733 ; 0 . 0 0 0 0 ; 0 . 0271 ; 0 . 0758 ; 0 . 0572 ; 0 . 0557 ;
0 . 0582 ; 0 . 0578 ; 0 . 0624 ; 0 . 0504 ; 0 . 0420 ; 0 . 1400 

)

12 

φ1 = 0 . 400 

θ1 = 0 . 300 

θ2 = 0 . 200 

(
0 . 3909 ; 0 . 0015 ; 0 . 0068 ; 0 . 0829 ; 0 . 0593 ; 0 . 0514 ;
0 . 0567 ; 0 . 0583 ; 0 . 0631 ; 0 . 0441 ; 0 . 0428 ; 0 . 1423 

)

13 

φ1 = 0 . 400 

θ1 = 0 . 300 

θ2 = 0 . 180 

θ3 = 0 . 060 

θ4 = 0 . 050 

(
0 . 4138 ; 0 . 0091 ; 0 . 0259 ; 0 . 0590 ; 0 . 0410 ; 0 . 0602 ;
0 . 0562 ; 0 . 0493 ; 0 . 0551 ; 0 . 0464 ; 0 . 0425 ; 0 . 1415 

)

14 

φ1 = 0 . 200 

φ2 = 0 . 150 

θ1 = 0 . 100 

(
0 . 2194 ; 0 . 1045 ; 0 . 0584 ; 0 . 0630 ; 0 . 0626 ; 0 . 0626 ;
0 . 0626 ; 0 . 0626 ; 0 . 0627 ; 0 . 0614 ; 0 . 0742 ; 0 . 1059 

)

15 

φ1 = 0 . 200 

φ2 = 0 . 150 

φ3 = 0 . 120 

φ4 = 0 . 100 

θ1 = 0 . 100 

(
0 . 2806 ; 0 . 1607 ; 0 . 1142 ; 0 . 0694 ; 0 . 0308 ; 0 . 0347 ;
0 . 0344 ; 0 . 0336 ; 0 . 0415 ; 0 . 0509 ; 0 . 0615 ; 0 . 0878 

)

16 

φ1 = 0 . 200 

φ2 = 0 . 150 

φ3 = 0 . 120 

φ4 = 0 . 100 

θ1 = 0 . 100 

θ2 = 0 . 065 

(
0 . 3018 ; 0 . 1767 ; 0 . 0979 ; 0 . 0623 ; 0 . 0261 ; 0 . 0321 ;
0 . 0335 ; 0 . 0318 ; 0 . 0389 ; 0 . 0463 ; 0 . 0629 ; 0 . 0899 

)

17 

φ1 = 0 . 200 

φ2 = 0 . 150 

φ3 = 0 . 120 

φ4 = 0 . 100 

θ1 = 0 . 100 

θ2 = 0 . 065 

θ3 = 0 . 060 

θ4 = 0 . 051 

(
0 . 3293 ; 0 . 1994 ; 0 . 1171 ; 0 . 0501 ; 0 . 0 0 0 0 ; 0 . 0177 ;
0 . 0256 ; 0 . 0257 ; 0 . 0357 ; 0 . 0468 ; 0 . 0629 ; 0 . 0898 

)

18 

φ1 = 0 . 200 

φ2 = −0 . 150 

φ3 = 0 . 120 

φ4 = −0 . 100 

φ5 = 0 . 080 

φ6 = 0 . 070 

φ7 = 0 . 060 

φ8 = −0 . 051 

θ1 = 0 . 100 

(
0 . 1484 ; 0 . 0679 ; 0 . 1154 ; 0 . 0721 ; 0 . 1023 ; 0 . 0792 ;
0 . 0672 ; 0 . 0589 ; 0 . 0657 ; 0 . 0760 ; 0 . 0606 ; 0 . 0865 

)

( continued on next page ) 
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Table 2 ( continued ) 

Demand model Autoregressive and moving 

average coefficients 

Newton weights vector x ∗

19 

φ1 = 0 . 200 

φ2 = −0 . 150 

φ3 = 0 . 120 

φ4 = −0 . 100 

φ5 = 0 . 080 

φ6 = 0 . 070 

φ7 = 0 . 060 

φ8 = −0 . 051 

θ1 = 0 . 100 

θ2 = 0 . 060 

(
0 . 1614 ; 0 . 0772 ; 0 . 1089 ; 0 . 0709 ; 0 . 0992 ; 0 . 0770 ;
0 . 0627 ; 0 . 0550 ; 0 . 0642 ; 0 . 0734 ; 0 . 0617 ; 0 . 0884 

)

20 

φ1 = 0 . 200 

φ2 = −0 . 150 

φ3 = 0 . 120 

φ4 = −0 . 100 

φ5 = 0 . 080 

φ6 = 0 . 070 

φ7 = 0 . 060 

φ8 = −0 . 051 

θ1 = 0 . 100 

θ2 = 0 . 060 

θ3 = 0 . 040 

θ4 = 0 . 010 

(
0 . 1712 ; 0 . 0842 ; 0 . 1169 ; 0 . 0648 ; 0 . 0958 ; 0 . 0730 ;
0 . 0592 ; 0 . 0499 ; 0 . 0600 ; 0 . 0737 ; 0 . 0627 ; 0 . 0887 

)

Table 3 

SE and ˜ I t results for ARMA ( p, q ) demands when NIS, DDI with SMA and DDI with WMA/Newton methods, are adopted. 

Demand Model 

NIS with MMSE method DDI with SMA method DDI with WMA/Newton method 

MS E NIS ˜ I NIS 
t MS E DDI ˜ I DDI 

t MS E DDI∗ ˜ I DDI∗
t 

1 67.3756 19.6936 20.3867 11.5614 19.4392 11.4855 

2 138.3996 33.0452 26.7926 14.3894 24.6456 14.2098 

3 300.1029 62.3794 36.5808 18.7090 31.8348 18.2922 

4 11.7600 7.8951 16.2400 07.4301 15.8909 7.4038 

5 13.5000 8.5608 18.5000 07.7789 17.9541 7.7376 

6 15.3600 9.3215 20.9400 08,1536 20.1583 8.0942 

7 74.3786 21.3331 22.3074 11.8812 21.0996 11.7838 

8 81.4330 23.0569 24.2527 12.2041 22.7645 12.0835 

9 113.5408 31.7447 33.2078 13.6816 30.2764 13.4401 

10 131.3007 37.0936 37.4282 14.4392 33.4410 14.1049 

11 140.6645 40.1215 39.6913 14.8415 35.1010 14.4536 

12 150.3507 43.2234 42.0563 15.2594 36.8125 14.8132 

13 166.6726 48.7798 44.6284 15.8453 38.2068 15.2839 

14 49.8496 17.7593 19.6140 10.8756 18.5583 10.7887 

15 82.8049 34.5483 24.1279 15.9735 20.8552 15.6680 

16 90.6387 37.3469 26.5067 16.4101 22.4153 16.0256 

17 99.4028 41.1695 29.7530 17.0342 23.9784 16.4813 

18 14.6534 10.3757 12.8447 8.4158 12.5980 8.3972 

19 15.5426 10.5792 13.8480 8.6012 13.5038 8.5747 

20 16,4370 10,6580 14.4736 8.7396 14.0079 8.7030 
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two performance metrics with respect to the lead-time L and the

moving average N. In the cases where the lead-time L is fixed and

N varies, Fig. 1 presents the simulation results in terms of the

MS E DDI and 

˜ I DDI 
t improvements in percentages. These improvement

percentages are computed as follows: 

M S E DDI _ Improv ement = 

∣∣∣∣M S E DDI ∗ − M S E NIS 

M S E NIS 

∣∣∣∣× 100 

and 

˜ I DDI 
t _ I mprov ement = 

∣∣∣∣ ˜ I DDI 
t 

∗ − ˜ I NIS 
t 

˜ I NIS 
t 

∣∣∣∣× 100 

The obtained results in Fig. 1 show that the evolution of the

improvements with respect to N is a linear function. This means

that the more the parameter N increases, the more the DDI strat-

egy with WMA/Newton is more efficient in comparison with the

NIS approach. This result is expected since the parameter N does

not interfere in the MMSE method used in the NIS approach. In

terms of MSE and average inventories, managers are advised to in-
rease their parameter N as well as possible while their lead-time

s constant. 

In the same way, Fig. 2 schematically presents the simulation

esults in terms of percentage improvements where the moving av-

rage parameter N is fixed and the lead-time L varies. 

The same reasoning is adopted. The obtained results in Fig.

 show that the evolution according to L is a logarithmic function.

hat is, for a fixed parameter N, the evolution of the enhancement

n percentage becomes less important as the lead-time L becomes

ore important. Indeed, for low values of L , the evolution in per-

ormance is important in comparison with cases where the values

f L are high. This result further confirms that the lead-time value

lways plays an important role in the performance of the supply

hains. 

.3.2. Comparison between the ddi strategy with WMA/Newton 

ethod and the ddi strategy with sma method with respect to lead 

ime and moving average parameters 

Based on the comparison between DDI with WMA/Newton re-

ults and DDI with SMA results, we study the sensibilities of the
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Fig. 1. Improvements of adopting DDI strategy with WMA/Newton method rather than adopting NIS strategy according to the moving average parameter N . 

Fig. 2. Improvements of adopting DDI strategy with WMA/Newton method rather than adopting NIS strategy according to the moving average parameter L . 
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wo performance metrics with respect to the lead-time L and the

oving average N. In the cases where the lead-time L is fixed and

varies, Fig. 4 presents the simulation results in terms of the

S E DDI and 

˜ I DDI 
t improvements in percentages. These improvement

ercentages are computed as follows: 

 S E DDI _ Improv ement = 

∣∣∣∣M S E DDI ∗ − M S E DDI 

M S E DDI 

∣∣∣∣× 100 

nd 

˜ I DDI 
t _ Improv ement = | ˜ I DDI 

t 
∗−˜ I DDI 

t 
˜ I DDI 
t 

| × 100 

The obtained results in Fig. 3 show that the evolution of the im-

rovements with respect to N is a concave function. These numer-

cal results show that this function attains its maximal enhance-

ent at N = 10 for L = 5 . This corresponds to a 7.44% improvement

n the average inventory savings. Otherwise, the enhancement is

ot optimal, but it still exists. In practice, the decision-makers can

onduct some simulations by varying the parameter N over a fixed

nterval and then by choosing the value that maximizes this en-

ancement. 
In the same way, Fig. 4 schematically presents the simulation

esults in terms of percentage improvements where the moving av-

rage parameter N is fixed and the lead-time L varies. 

The same reasoning is adopted in Fig. 4 . The obtained results

how that the evolution according to L is also a concave function.

hese numerical results show that this function attains its maxi-

al enhancement at L = 3 for N = 12 . This corresponds to a 7.65%

mprovement in the average inventory savings. Generally, the lead-

ime value does not change since it depends on the transportation

nd logistics systems, and managers do not truly have the power

o easily manipulate its value. 

.3.3. Evolution of the bullwhip effect 

In this subsection, we study the evolution of the bullwhip ef-

ect that is associated with the WMA/Newton forecast method.

hus, we consider an example of an ARMA ( 2 , 2 ) demand process

ith the following fixed parameters set: c = 10 , φ1 = 0 . 4 , φ2 =
 . 2 , θ1 = 0 . 15 , θ2 = 0 . 10 and σ 2 

ξ
= 1 . We mainly compute the

E E W MA/Newton 
M M SE 

and BE E W MA/Newton 
SMA 

indicators in Eqs. (9) and ( 10 )

n order to approximate the gap of the bullwhip effect, thereby
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Fig. 3. Improvements of adopting DDI strategy with WMA/Newton method rather than adopting DDI with SMA according to the moving average parameter N. 

Fig. 4. Improvements of adopting DDI strategy with WMA/Newton method rather than adopting DDI with SMA according to the lead-time L. 
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separating on one hand, the DDI strategy with the WMA/Newton

method to the NIS strategy with the MMSE method, and on the

second hand, the DDI strategy with the WMA/Newton method to

the DDI strategy with the SMA method. While these indicators are

functions of the moving average N and lead-time L , we also check

the variations according to these two parameters. 

Fig. 5 illustrates the behavior of the evolution of the bullwhip

effect when an actor switches from the MMSE method in a NIS

strategy to the WMA/Newton method in a DDI strategy. For a
xed configuration of the parameter N, the performance of the

MA/Newton method becomes more important as the lead-time

 decreases. In this example, for N = 8 , DDI with WMA/Newton

s valuable in terms of bullwhip effect if the lead-time value is

qual to 2. Next, for a fixed lead-time L , the performance of the

MA/Newton method is more valuable as the parameter N in-

reases. In terms of L , the results show that the value of the break-

oint N increases as the lead-time L increases. This is expected as

enerally, the performance of the MMSE method compared to the
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Fig. 5. Simulated BE E WMA/Newton 
MMSE 

indicator according to moving average N and lead-time L . 

Fig. 6. Simulated BE E WMA/Newton 
SMA 

indicator according to moving average N and lead-time L. 
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m

MA/Newton improves with increasing the lead-time value. On

he other hand, the results show that the break-point L decreases

ith the value of N as the performance of WMA/Newton improves

ith the length of the history being used. We conclude that for

ach value of the lead-time L , there exists a unique threshold of

from which the DDI strategy with the WMA/Newton method is

ore valuable than the NIS strategy with the MMSE method, in

erms of bullwhip effect. 

Fig. 6 illustrates the behavior of the bullwhip effect when the

MA and WMA/Newton methods are used in the forecasts. There

re two important results. The first one is that the SMA method

utperforms the WMA/Newton method in terms of bullwhip ef-

ect. Indeed, for the simulated data, the BE E W MA/Newton 
SMA 

results

re always greater than one. This is due to the unequal weights

hat are associated with the N past observations in equation (2) .

his can be argued to be a limitation of the WMA/Newton ap-

roach compared to the SMA method, since the SMA method pro-

ides lower variability of order processes. The second one is that

he BE E W MA/Newton 
SMA 

indicator increases with N or L . The results

lso show that these amplifications evolve in a quasi-logarithmic
anner. That is, the increase in the indicator becomes less impor-

ant as one of the two parameters increases. Hence, the bullwhip

ffect am plifies in the case of a DDI strategy where the down-

tream actor decides to switch from the use of the SMA method

o the use of the WMA/Newton method. The amplified bullwhip

ffect is surely critical if the upstream actor doesn’t use a safety

tock as a buffer against orders variations. Indeed, excess inven-

ory can result in waste, while insufficient inventory can lead to

oor customer experience and lost business. Thus, the upstream

ctor is emphasized to use a reserve inventory in such context. 

. Discussion 

In decentralized supply chains, actors often do not want to

hare their private information, especially in regard to the mar-

et demand. This variable is often considered as key data provid-

ng competitive power. Even when supply chain actors favor infor-

ation sharing, other issues (the trust in the shared data, infor-

ation leakage, high investment costs, systems compatibility, etc.)

ay still persist. 
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This work provides an initial attempt to introduce the WMA

forecasting method in a decentralized supply chain in which actors

favor adopting the DDI strategy. The propagation of demand pro-

cesses using the WMA forecast method is unique. The introduction

of the Newton optimization method allows for the quantification

of the weighting of past demand observations with the purpose

of minimizing the mean squared error and average inventory. The

study of the improvements, according to the parameters, shows

that supply chain decision-makers are able to estimate the opti-

mal parameter values. While simulations allow practitioners to ob-

tain general ideas and approximate settings, varying the lead-time

is not truly possible. However, they can easily change the moving

average while conducting forecasting as long as this value does not

exceed the historical time horizon. 

It is first important for decision-makers to further reduce inven-

tory levels and gather additional savings. Indeed, the resulting re-

duction in the manufacturer translates into cost savings over time.

These savings are the most important engine leading to DDI adop-

tion. Our work shows through simulations that savings from the

WMA/Newton approach exceed the savings from the SMA method.

We estimate that Newton’s method itself is not expensive in terms

of the time implementation. While it is natural to expect a distri-

bution of these savings between the manufacturer and the retailer,

coordination is essential to achieve such improvements. 

If the DDI strategy is adopted in a supply chain where actors

decide to adopt WMA/Newton method, the decision-makers are

faced with compromising the two major criteria axes: the fore-

casted mean squared errors and average inventory levels on one

side, and the bullwhip effect amplifications on another side. In this

paper, we have considered the enhancement of the forecast MSE

and inventory level metrics since they are directly related to av-

erage inventory costs over time. The bullwhip effect is then costly

to the supply chain if the upstream actor decides to base his fore-

casting only on the received orders process. However, in the case

of the DDI strategy, the upstream actor bases his forecasting on or-

ders and inferred demand at the same time. The knowledge of the

estimated parameters and error variance interfere in the reduction

of the MSE and the average inventory level at the upstream ac-

tor. If the supply chain is initially adopting a NIS strategy where

the MMSE method is used in the downstream forecasts, the down-

stream actor is emphasized to consider a high value of N (beyond

a certain break-point) in order to reduce the bullwhip effect. Else,

if the supply chain is initially adopting a DDI strategy where the

SMA method is used in the downstream forecasts, the subject of

bullwhip effect amplification can be critical if the upstream actor

decide to not use a safety stock as a buffer against orders varia-

tions. Consequently, the upstream actor needs to use a reserve in-

ventory in order to cover the orders variations. 

Except for the optimal weighting information that must be

shared between the supply chain actors, this approach does not re-

quire further assumptions than those that are required by DDI with

the SMA method, namely, the knowledge of the demand process

(time-series structure) and its estimated parameters all along the

supply chain. Thus, it is also essential to consider the costs of such

coordination. These costs are primarily related to the implementa-

tion of the method itself (if another forecast method was adopted)

and the weighting information sharing. 
Table 4 

NIS and DDI results for ARMA ( 2 , 1 ) demand process. 

Adopted strategy 

Metrics NIS 

DDI with SMA 

forecasting 

DDI with 

WMA/Newton 

forecasting 

MSE 49.8496 19.6140 18.5583 
˜ I t 17.7593 10.8756 10.7887 
The WMA/Newton forecasting approach for the DDI strategy

an be established through different managerial contracts between

he manufacturer and the retailer. The literature on such contracts

s abundant. For example, the manufacturer may propose contracts

o the retailer based on principal agent relationships ( Müller &

urner, 2005 ), the supply chain actors can negotiate through pro-

osals ( Dudek & Stadtler, 2005 ; Taghipour & Frayret, 2013 ). Buy-

ack ( Chen & Bell, 2011 ) or price discount ( Jain, Seshadri & Sohoni,

011 ) contracts may also be proposed. 

. Generalization for multi-level supply chains 

The DDI results where the downstream actor adopts the

MA/Newton forecast approach can be extended to multi-level

upply chains where there is more than two actors. Let consider a

-level supply chain where each downstream actor places an order

o his formal upstream actor after revising his inventory level. We

uppose that all actors accept to adopt DDI strategy through the

MA/Newton method. It means that each actor i = 2 , 3 , . . . , n will

se the WMA/Newton forecast method by considering the weight-

ng vector of his formal upstream actor i − 1 . Then every upstream

ctor i = 1 , 2 , . . . , n − 1 is able to infer the demand occurring at his

ormal downstream actor i + 1 . Notice that the first upstream actor

s not concerned about a specific forecast approach. Fig. 5 shows a

emonstration of such a multi-level supply chain. 

In a set configuration such as Fig. 7 , Actor 1 is generally a

upplier of raw materials who endures large inventory costs. Let

uppose a customer of a single product whose demand follows

n ARMA ( p, q ) process at the actor n . After revising his inventory

evel, this actor will place an order at the actor n − 1 . The order

rocess will keep the same autoregressive moving average struc-

ure as the demand but it will increase its error variability, as one

oves further up the supply chain. Moreover, for illustration, let

onsider an example of an initial customer’s demand model of an

RMA ( 2 , 1 ) defined by: 

 t = 10 + 0 , 2 D t−1 + 0 , 15 D t−2 + ξt + 0 , 1 ξt−1 

here ξt → N( 0 , 1 ) is the standard normal distributed error at

eriod t . The order process arriving at the actor n − 1 is also an

RMA ( p, q ) process defined by: 

 t = 10 + 0 , 2 Y t−1 + 0 , 15 Y t−2 + 

˜ ξt + 0 , 1 

˜ ξt−1 

here ξt 
∑ 

is the normal error distributed error at period t , and

here x i are the Newton’s weights shared by the actor n − 1 and

sed by actor n in his forecasts. 

We present in Table 4 the different metrics values at actor n −
 where NIS, DDI with SMA method and DDI with WMA/Newton

ethod are evaluated. 

Reductions of MSE and average inventory level at Table 4 is im-

roving when moving from SMA method to WMA/Newton method.

n this example, DDI with WMA/Newton allows the actor n − 1

o reduce his average inventory level by about 39% compared to

IS and nearly 0,8% compared to DDI with SMA method. Such re-

uctions are translatable into real inventory savings if both actors

ere favorable to collaborate through a benefit sharing contract.

hat is, we suppose that the downstream actor is favorable to such

ontract if he will gain a part of the savings at the upstream actor.
% of Reduction when adopting 

DDI with WMA/Newton rather 

than NIS 

% of Reduction when adopting 

DDI with WMA/Newton rather 

than DDI with SMA 

62,7714 5,3823 

39,2504 0,7990 
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Fig. 7. N-level supply chain where actors accept DDI while adopting WMA/Newton forecasting. 
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In the same way, let suppose every upstream actor i =
 , . . . , n − 1 of a supply chain propose a revenue-sharing contract

o his formal downstream actor in order to convince him to adopt

MA/Newton method. Let R i be the inventory savings of DDI

doption, at actor i . We also assume that the costs of adopting

MA/Newton are related to the Newton’s weighting vector infor-

ation sharing in addition of the implementation costs. Let C i +1 
i 

e the sum of the Newton’s weighting information sharing cost at

ctor i and the implementation cost at actor i + 1 . The net profit of

uch collaboration is then expressed by π i +1 
i 

= R i − C i +1 
i 

which will

e shared with the downstream actor i + 1 according to their con-

ract. Let βi be the proportion of the net profit π i +1 
i 

shared with

he downstream actor i + 1 , where βi verifies 0 ≤ βi ≤ 1 . Then πi 

he inventory savings of the actor i , resulting from concluding two

ontracts of collaboration with actor i − 1 and actor i + 1 is ex-

ressed as follows: 

i = βi −1 π
i 
i −1 + ( 1 − βi ) π

i +1 
i 

i = βi −1 

(
R i −1 − C i i −1 

)
+ ( 1 − βi ) 

(
R i − C i +1 

i 

)
Note that for actor 1, there is no actor 0 and only one contract

an be established with actor 2 which implies β0 = 0 and π1 
0 

=
 . Consequently, π1 = ( 1 − β1 )( R 1 − C 2 1 ) . In the same manner, note

hat for actor n , there is no actor n + 1 and only one contract can

e established with actor n − 1 which implies βn = 0 and πn +1 
n =

 . Consequently, πn = βn −1 ( R n −1 − C n 
n −1 

) . 

Now if we consider the whole n-level supply chain, the total

upply chain inventory savings from adopting DDI strategy with

he WMA/Newton method, where a revenue sharing contract is es-

ablished between every successive couple of actors, is expressed

s follows: 

= 

n ∑ 

i =1 

πi = π1 + 

n −1 ∑ 

i =2 

πi + πn 

= ( 1 − β1 ) 
(
R 1 − C 2 1 

)
+ 

n −1 ∑ 

i =2 

[
βi −1 

(
R i −1 − C i i −1 

)
+ ( 1 − βi ) 

(
R i − C i +1 

i 

)]
+ βn −1 

(
R n −1 − C n n −1 

)
The last total profit equation proves that the DDI approach with

MA/Newton forecasting improves the performance of the en-

ire decentralized supply chain, as well as DDI with SMA method

oes. The enhancement is much more considerable compared to

IS strategy and it is more important than DDI with SMA method.

ndeed, all the DDI with WMA/Newton forecasts outperforms the

DI results with SMA in terms of average inventory level and con-

equently in inventory savings. Based on our simulations, we con-

lude this section by the following statement: 

NIS DDI DDI 
<<< πSMA < πW MA/Newton 
. Conclusion 

Improving the results of supply chains coordination is one of

he most important areas for academic researchers and manage-

ent practitioners. Optimization presents a mathematical branch

nd an effective tool for collecting better management solutions.

n a decentralized supply chain, actors aim to reduce their total

osts by applying effective coordination approaches. One of the

ost cost-effective coordination approaches, namely, DDI, can be

et up when actors agree to negotiate and cooperate. DDI allows

he upstream actor to infer the demand of his formal downstream

ctors without the need for information sharing mechanisms. DDI

as proved its effectiveness by obtaining almost near-optimal so-

utions. The literature has shown that the DDI approach cannot be

pplied through MMSE or SES methods for the downstream actors

ut only through the SMA method due to the uniqueness of the

rocesses’ propagation. Consequently, we found that it is natural

o study the feasibility of DDI using other forecasting methods. 

This paper is a follow-up study to previous works with the

urpose of improving existing DDI results through the theoretical

nalysis of inventory models based on some strong assumptions.

n a context of the DDI coordination strategy, instead of using the

MA method, we proposed the adoption of the WMA method com-

ined with the well-known Newton optimization method. This pa-

er thus enriches the existing literature by exploring the feasi-

ility of the DDI approach when the WMA forecasting method is

dopted. 

We first established the expressions of the manufacturer’s fore-

asting MS E DDI and 

˜ I DDI and the resulting bullwhip effect. We pro-

osed two measures, namely BE E W MA/Newton 
M M SE 

, to assess the ampli-

cation of the bullwhip effect separating the adoption of the DDI

ith the WMA method from the adoption of the NIS strategy with

he MMSE method, and BE E W MA/Newton 
SMA 

, to assess the amplification

f the bullwhip effect separating the adoption of the DDI strategy

ith the WMA/Newton method from the adoption of the DDI with

he SMA method. Second, we mathematically formalized the MFOP

nd proposed the application of Newton’s method for the resolu-

ion. Finally, the results for the MS E DDI and 

˜ I DDI optimization based

n the simulated causal invertible ARMA ( p, q ) demand processes

onfirm the effectiveness of the WMA/Newton approach to propose

urther enhanced supply chain solutions. 

The implications of this paper are as follows. Supply chain

anagers can introduce the WMA forecast method in the con-

ext of the DDI strategy because of the uniqueness of the gen-

rated orders process for upstream actors. First, the paper pro-

ides WMA/Newton as a novel approach for coordination in de-

entralized supply chains. This approach does not require further

ssumptions than those required by the DDI strategy with the

MA method, except for the optimal weighting vector, which must

e shared between the supply chain actors. Second, based on the

onducted simulations, the paper confirms that the DDI strategy

ith the WMA/Newton approach generally outperforms the NIS
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strategy and the DDI strategy with the SMA method in terms of

MS E DDI and 

˜ I DDI . Therefore, the paper concludes that the DDI’s per-

formance depends on the allocation vector, and especially MS E DDI 

and 

˜ I DDI generally improve with the optimal Newton’s allocation.

The “generally ” statement is employed here since this work does

not provide an exhaustive sensitivity analysis of the performance

according to the demand process parameters. Indeed, it is not easy

to check the entire sensitivity of the DDI strategy according to the

combination of two sets of parameters φi { i =1 , ... ,p } and θ j { j=1 , ... ,q } ,
especially since they are not fixed in advance. Indeed, in this case,

the threshold can take the form of a summation, a product, or any

other linear or non-linear relationship, from which we can state

a general expression of a yield threshold. Establishing such rela-

tion requires a deep study on the sensitivity according to the pro-

cess parameters. Since the demand models are mathematically dis-

crete and no continuous, there is no way to get through the par-

tial derivative functions. We think it can be a case-by-case study

to bring an exhaustive benchmark and then be able to generalize

some threshold models. 

Reversely, the bullwhip effect is affected. In comparison with

the NIS strategy, DDI with WMA/Newton method is valuable if

the parameter N is high enough vis-à-vis the lead-time L . As

shown in the simulation section, a break-point from which DDI

with WMA/Newton is more valuable than the NIS strategy can be

determined by varying the parameter N of the forecast method.

In the case of a DDI adoption where the downstream actor is

favourable to switch from an initial situation of an SMA method

to the WMA/Newton method, the bullwhip effect amplifies. This

was predictable because of the non-equitable weights that are as-

sociated with the N historical demand observations in the method.

However, the fact that the ponderation vector in the downstream

actor’s forecasts, is determined according to the minimization of

the average inventory level of the upstream actor, results into the

reduction of the mean inventory costs of the upstream actor over

the time. In this case, the bullwhip effect can be costly to the up-

stream actor of the supply chain if he doesn’t use a safety stock

as a buffer against orders variations. Indeed, excess inventory can

result in waste, while insufficient inventory can lead to poor cus-

tomer experience and lost business. Thus, the upstream actor is

emphasized to use a reserve inventory in such context of meth-

ods’ change. Third, the paper concludes that supply chain man-

agers, when the DDI with the WMA/Newton is adopted, can po-

tentially determine the optimal parameters ( N, L ) in terms of MSE

and average inventory levels improvements. The value of the WMA

parameter N can be easily manipulated through some simulations,

while managers do not truly have a large margin to vary the lead-

time L . Indeed, the lead-time is often related to supply chain trans-

portation. 

From the point of a supplier or a manufacturer, the additional

merit of going the extra steps of WMA/Newton method is the ev-

ident forecast MSE and inventory levels reduction which will be

earned over time. The reduction of error is important because it is

directly correlated to the reduction of inventory levels. As shown

in equation 5 , the average inventory level is a positive non-linear

function of the forecast MSE. The simulated experiments in Table

3 show that all empirical inventory means resulted from adopt-

ing WMA/Newton are lower than empirical inventory means re-

sulted from adopting SMA method. This difference may not seem

significant. However, the gap percentage separating the two com-

pared methods depends on the size of the enterprise and therefore

varies from a small, medium or multinational enterprise. In addi-

tion, batch sizing rules and product structure affect the costs of a

company’s inventory system. ( Lea & Fredendall, 2002 ). As exam-

ple, let suppose a two-level supply chain adopting the NIS strategy

where the downstream actor, a retailer, adopts the MMSE method.
oreover, let suppose that the retailer faces an ARMA(2,1) demand

attern and the average inventory level at the upstream level, a

anufacturer, is equal to 10 0 0 units. By adopting the DDI strategy

here the retailer uses the SMA method, the manufacturer earns

he reduction of nearly 40% of his average inventory level, let’s say

00 units, and then the average inventory level is equal to 600

nstead of 10 0 0 units. In the same way, by adopting the DDI strat-

gy where the retailer uses the WMA/Newton method, the man-

facturer earns an additional average saving of 8 units plus 400

nits. Hence, our work provide supplementary inventory reduc-

ions based only on the forecasting method. The Newton method’s

mplementation is not an exhausting task. The time and resources

eeded for such a method depends on the capacity of qualified hu-

an resources to implementation. Moreover, the initial implemen-

ation cost is unique. We then estimate that the costs associated

ith the sharing of the Newton weighting vector are negligible,

specially when we know that the unit holding costs of some in-

ustry products are relatively high. Indeed, if we suppose that a

anufacturer produces furniture that is stored in a warehouse and

hen shipped to retailers, the manufacturer must either lease or

urchase warehouse space and pay for utilities, insurance, and se-

urity for the location. the company is responsible for paying the

alaries of the personnel responsible for moving the goods in and

ut of the warehouse. In addition, the company is exposed to a cer-

ain risk of damage of the goods when moving to trucks or trains

or shipping. All these factors are taken into account in the cal-

ulation of the unit inventory cost. Therefore, minimizing inven-

ory costs is an important supply-chain management strategy. The

nventory presents an asset account that requires significant cash

utlays. The importance of this account is then linked to the de-

isions made by the managers, who must minimize it in order to

aintain a reasonable level of liquidity for other purposes. For ex-

mple, increasing the inventory balance by 20,0 0 0 dollars means

hat less cash is available to operate the business each month. This

ituation is considered an opportunity cost. If a company wants to

ave more cash, it must sell its products as quickly as possible

o reap its profits and move its business forward. The faster the

oney is raised, the more the company is able to develop its busi-

ess in the short term. A commonly used indicator is the inventory

urnover rate, which is calculated as the cost of goods sold divided

y the average inventory ( Lee, Zhou & Hsu, 2015 ). For example, a

ompany that has 1 million dollars in cost of goods sold and an

nventory balance of 250,0 0 0 has a turnover ratio of 4. The goal is

o increase sales and reduce the required amount of inventory so

hat the turnover ratio increases. By projecting our results of sim-

lations on this indicator, the turnover ratio of the manufacturer

here the retailer uses the WMA/Newton method, is higher than

hat where the retailer uses the SMA method, because the average

nventory level in the first case is lower than that in the second

ase ˜ I DDI 
W MA/Newton 

≤ ˜ I DDI 
SMA 

for the same fixed cost of goods sold. Con-

equently, this capability of reducing the average inventory level

nd increasing the turnover ratio is one of the most important cat-

lysts of an enterprise to enhance productivity and competition. As

t was argued in this paper, some typical contracts can be proposed

y the upstream actor to his formal downstream actor, in order to

ollaborate with the aim of creating common and shared opportu-

ities of trust, transparency and future coordination. 

The SMA method is preferable against the WMA method in

erms of bullwhip effect. However, The SMA method is not prefer-

ble in terms of the distribution of the inferred demand when

ompared against the WMA method, because the results of the

MA method present one specific case of the results of the WMA

ethod. Indeed, if we replace x i by 1 /N for i = 1 , . . . , N in all the

xpressions where WMA is used, we exactly retrieve all the ex-

ressions where SMA is used for forecasts. It’s then concluded that
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here is no preference between SMA and WMA in terms of the dis-

ribution of the inferred demand. 

We conclude our paper with natural lines for future studies.

irst, the DDI strategy can still be evaluated using other forecast-

ng methods. Second, it would be interesting to adopt the min-

mization of the bullwhip effect as the objective function of the

MA/Newton approach. Another direction is the consideration of

ultiobjective optimization for parallel improvements of the sup-

ly chain performance metrics. 

upplementary materials 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.ejor.2020.04.044 . 
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