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This paper covers forecast management in decentralized supply chains. For various reasons, companies
do not always agree to disclose their information. To deal with this issue, we consider a downstream
demand inference (DDI) strategy in a two-level supply chain. DDI was assessed using different forecast-
ing methods and was successfully tested using only a simple moving average. In an investigatory context
using other forecasting methods, we propose the introduction of the weighted moving average method,
which affects nonequal weights to past observations. First, we verify the unique propagation of demand
processes. Second, we consider the forecast mean squared errors, the average inventory levels and the
bullwhip effect as the supply performance metrics. Third, we formalize the manufacturer’s forecast opti-
mization problem and apply Newton’s method to solve it. The optimization results, based on the simu-
lated demands, confirm the effectiveness of our approach to produce further enhanced solutions and to
improve the results of DDI. We have shown that a little change in the weights of the forecast method im-
proves the competitiveness in the market. Conversely, the bullwhip effect is affected due to the nonequal
weighting in the forecast method.
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1. Introduction

The optimal supply chain performance requires the realization
of numerous actions. Regrettably, those actions are not always in
the best interest of the actors of the same supply chain. The supply
chain actors are mainly focused on achieving their own objectives
and that self-serving focus often leads to poor performance. How-
ever, enhanced performance is achievable if the companies coordi-
nate their operations such that each company’s objectives become
aligned with the supply chain’s performance.

Supply chain management is one of the most important
research areas that aims to improve the overall supply chain
performance. More specifically, actors in supply chains are con-
tinuously seeking to minimize their inventory levels, which are
translated into cost savings over time. In a decentralized two-level
supply chain consisting of a manufacturer and a retailer, the
manufacturer seeks to improve the quality of the forecast MSE
with the objective of minimizing his average inventory levels.
In fact, information sharing presents a common approach to
deal with inventory reductions. On one side, a stream of papers
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(Cachon & Fisher, 2000; Sahin & Robinson, 2005; Yu, Yan & Edwin
Cheng, 2001) argued that information sharing can reduce the
inventory holdings, related costs and bullwhip effect occurring
in supply chains. Conversely, many researchers (Fawcett, Oster-
haus, Magnan, Brau & McCarter, 2007; Forslund & Jonsson, 2007;
Klein, Rai & Straub, 2007; Lee & Whang, 2000; Mendelson, 2000)
also argued that information sharing has a number of practi-
cal limitations, such as confidential policies, data reliability and
the lack of information systems’ compatibility. Vosooghidizaji,
Taghipour and Canel-Depitre (2019) considers different scenarios
wherein asymmetric information cannot be shared with supply
chain partners because of many reasons that include “the fear
of losing competitive advantage, getting extra benefits, getting
a better price, maintaining one’s bargaining power, not being
controlled or dictated to by other parties, ensuring compatibility
of information systems, and other strategic reasons”. An actor not
sharing information can affect the whole system of the supply
chain. It was also argued that, by revealing sensitive demand
information to the upstream manufacturer, a retailer may lose
some advantage in future price negotiations (Ha, Tong & Zhang,
2010). Wal-Mart announced that it would no longer share its
information with other companies like Inc and AC Nielson as
Wal-Mart considers data to be a top priority and fears information
leakage (Hays, 2004). In fact, depending on the nature and size
of supply chains, not sharing information can result to differ-
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ent levels of losses. William Wappler, President of Automotive
Technology Leader SURGER, says, "The automotive industry is es-
timated to lose annually more than 2 billion dollars in the supply
chain due to losses in inventory of containers, parts, finished ve-
hicles and logistical inefficiencies, through a notorious lack of visi-
bility and inherent control.” He adds: “Most automotive companies
struggle to reduce supply chain costs year over year.” According
to their internal forecasts, the use of the proposed digital platform
can help participants achieve double-digit cost savings through
highly accurate supply chain visibility and the collaborative power
of shared information (Henderson, 2018). Indeed, industries where
component suppliers need to build a high capacity in advance due
to short lead times, face high inventory costs because of uncertain
market demand. Generally, it has been accepted that the demand
is a private information of the retailers, that leads to problems of
management of the inventory at the upstream levels.

Recently, a new coordination supply chain approach, known as
downstream demand inference (DDI), (Ali & Boylan, 2012; Ali &
Boylan, 2011; Ali, Babai, Boylan & Syntetos, 2017; Tliche, Taghipour
& Canel-Depitre, 2019) emerged in the supply chain field. The DDI
strategy allows the enhancement of decentralized systems with-
out having to go through explicit demand information sharing. In-
stead of demand information sharing, the upstream actor can in-
fer the demand from the order history. The DDI strategy assumes
that the demand process and its parameters are known through-
out the two-level supply chain. The first part of the assumptions
- that is the retailer facing the customer’s demand is able to eas-
ily estimate the parameters of the process from his demand his-
tory - is evident. The second part of the assumptions - that is
the ability of the manufacturer to infer the process of the de-
mand occurring at the retailer - is subject of research and dis-
cussion in the literature. Ali and Boylan (2011) showed that DDI
cannot be applied with the optimal minimum mean squared error
(MMSE) forecast method because the propagation of the demand
may not be unique. Ali and Boylan (2012) also showed that DDI is
not possible with the single exponential smoothing (SES) method,
but only when the downstream actor uses the simple moving av-
erage (SMA) method that attaches equal weights to past obser-
vations. Ali et al. (2017) showed that DDI generally outperforms
the no information sharing (NIS) strategy in terms of the forecast’s
mean squared error (MSE) and inventory costs under the assump-
tion of an AR(1) demand model. Under the DDI strategy, Tliche et
al. (2019) considered the MSEPP! and average inventory level (iPP)
as upstream supply chain performance metrics and generalized the
above results for causal invertible! ARMA(p, q) demand processes.
In a context of DDI strategy, this paper aims to further enhance the
DDI's results by acquiring further optimized solutions in terms of
MSE and average inventory levels.

A first possibility for improvement can be emphasized on the
forecasting method adopted in the DDI approach. Since the SMA
method is the only method of prediction up to now allowing the
inference of the downstream demand, we have thought to intro-
duce a variant of this method while keeping in mind the orien-
tation of improvement of the average inventory levels. The SMA
method is characterized by the equal weights associated to the N
past observations, to predict the future demand. Every time pe-
riod, the oldest demand observation is dropped out and exchanged
by the last demand observation. A first intuition is to disrupt the
weightings of the method in order to improve the performance.
In this way, the Weighted Moving Average (WMA) method was
selected in order to first investigate its feasibility in the DDI ap-
proach, and second to investigate whether any enhancement is

1 Please refer to Shumway and Stoffer (2011) for more details on ARMA models,
causality and invertibility.

achievable in a two-level supply chain. The WMA method is a sim-
ple forecasting method, as well as the SMA method. The WMA
method attaches different weights/ponderations to the N past de-
mand observations, and in the same way as SMA, the oldest de-
mand observation is dropped out and exchanged by the last de-
mand observation, every time period. The disruption’s possibility
of the weights in the method was an opening door for exploring
potential improvements in different directions. One of these direc-
tions is the optimization according to the upstream actor’s average
inventory levels.

Consequently, acquiring further “optimized” solutions naturally
opens the line of our research to other branches of scientific re-
search. Indeed, optimization plays a very important role in several
areas of application and especially in supply chain management.
Omnipresent since the beginning of time, optimization is a math-
ematical discipline, that has grown in importance during the 20th
century. This is due to the development of industrial sciences, op-
erations planning (economics, management, logistics, scheduling),
emerging technologies (automatic, electronic, electrotechnical, etc.)
and computer science, which has made previously impassable nu-
merical resolution methods efficient. Mathematically, it consists of
minimizing, or maximizing, a function that represents an objective
to be achieved on a set called a "domain" or "set of feasible solu-
tions," which is defined as a set of constraints that are to be re-
spected. The objective is to find the best solution belonging to the
domain that acquires the optimal value of the objective function.
The nature of the objective function and the constraints defining
the domain determine the nature of the optimization problem and
the difficulty of its resolution.

In this paper, instead of using the SMA method, we use the
weighted moving average (WMA) method, which attaches differ-
ent weights to the N past observations, and then re-establish the
manufacturer MSEPP! and /PP expressions according to a weight-
ing vector x. Second, we propose two measures to quantify the gap
separating the adoption of the NIS strategy with the MMSE method
to the adoption of the DDI strategy with the WMA method on one
hand, and on the second hand to quantify the gap separating the
adoption of the DDI strategy with the SMA method to the adop-
tion of the DDI strategy with the WMA method, in terms of bull-
whip effect. Third, we mathematically formalize the manufacturer’s
forecast optimization problem (MFOP) and propose the application
of the well-known Newton’s method in order to obtain the opti-
mal weighting vector x*. To the best of our knowledge, this paper
presents the first attempt to introduce Newton’s method into fore-
casts where the WMA method is adopted. The numerical results
of the MSE and I; optimizations based on the simulated causal
invertible ARMA(p, q) demand processes confirm the effectiveness
of this approach to produce further-optimized solutions compared
to NIS strategy with MMSE method and DDI strategy with SMA
method, and consequently to improve the competitiveness in the
market. However, the WMA method affects the bullwhip effect
since nonequal weights generate higher orders’ variability. It is
concluded that if the supply chain is initially adopting a NIS strat-
egy where the MMSE method is used in the downstream forecasts,
the downstream actor is emphasized to consider a high value of
N (beyond a certain break-point) in order to reduce the bullwhip
effect. Else, if the supply chain is initially adopting a DDI strat-
egy where the SMA method is used in the downstream forecasts,
the upstream actor needs to use a reserve inventory in order to
cover the amplified orders variations. Hence, we provide a devel-
oped picture of the DDI strategy’s adoption when the WMA is used
for demand forecasts and where the Newton’s method is employed
to quantify the weighting vector of the WMA method, according to
the minimization of the upstream average inventory levels.

The rest of the paper is organized as follows. Section 2 is
devoted to the literature review. In Section 3, we present
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the proposed modeling approach. Section 4 is devoted to the
implementation, simulation and discussions. Finally, in Section 5,
we summarize the contributions, the results, the limitations and
perspectives.

2. Literature review

Demand information sharing is one of the most important cata-
lysts leading to improvements in supply chains. Sharing customers’
demand information requires that upstream actors have access to
the demand data of their respective downstream actors. The need
for information sharing mechanisms, in order to extract demand
information has always been an open topic of discussion in the
literature. Some researchers (Chen, Drezner, Ryan & Simchi-Levi,
2000b; Lee, So & Tang, 2000; Raghunathan, 2003; Yu, Yan & Cheng,
2002) argued that downstream actors need to share their demand
information with upstream actors in order to reduce the bullwhip
effect. On the other hand, other researchers (Gaur, Giloni & Se-
shadri, 2005; Gilbert, 2005; Raghunathan, 2001; Zhang, 2004) re-
lied on some strong arguments to show that the received orders
already contain information about the customers’ demand process.

In a context of no information sharing policy, DDI appears to
be a novel collaboration management approach that allows the up-
stream actor to infer the demand of his formal downstream actors
without the need for information sharing mechanisms. According
to the DDI approach, the inventory level/cost savings from coordi-
nation and negotiation are possible if trust is established between
parties (Ali et al., 2017; Tliche et al., 2019).

The works of Ali and Boylan (2011) and Ali and Boylan
(2012) have already shown that “DDI is not possible through SES or
optimal MMSE methods, but only with nonoptimal SMA method”.
This is due to the nonfeasibility of DDI when the propagation
of the demand throughout the supply chain is not unique. Ali
et al. (2017) have investigated DDI using the SMA method for
an AR(1) demand model and conducted numerical analysis based
on real data. Based on simulations, Tliche et al. (2019) general-
ized DDI's results for causal invertible ARMA(p, q) demand models
and showed that this strategy reduces the bullwhip effect. Conse-
quently, it is still natural to explore the feasibility of DDI and the
improvement of the results by using other forecasting methods.
It's first about the margin of enhancement still existing between
the DDI strategy’s results and the forecast information sharing

Table 1
Forecasting when DDI strategy is adopted.

(FIS) strategy’s results which corresponds to the centralized system
where the demand information is explicitly shared between actors.
Therefore, exploring the DDI strategy by adopting simple forecast-
ing methods is still an interesting management research area for
both researchers and practitioners.

Forecasting in supply chains is an increasingly critical organi-
zational tool (Sanders & Manrodt, 2003) for improving business
competitiveness. Ali and Boylan (2012) provided a summary of
the highly ranked forecasting methods according to their usage,
familiarity and satisfaction among practitioners. Generally, sup-
ply chain decision-makers choose a forecasting method based on
its simplicity. Especially, the SES, regression analysis (RA) and
SMA methods are popular among forecasting managers for fa-
miliarity and satisfaction reasons. As reported in the works of
Sanders and Manrodt (1994) and Boylan and Johnston (2003), be-
cause of their high difficulty and sophistication, optimal forecast-
ing methods are most often considered to be undeserving of ex-
tra effort. On the other hand, nonoptimal forecasting methods
are more intuitive, especially for those with limited mathematical
backgrounds. In addition, Johnston, Boyland, Meadows and Shale
(1999) showed that “the variance of the forecast error for the
nonoptimal method SMA was typically 3% higher than the SES
method for an ARIMA(0,1,1)".

In this paper, we examine the effects of employing a simple
nonoptimal forecasting method, namely, the WMA, in the down-
stream actor’s forecasts, where demand follows a causal invertible
ARMA(p, q). The WMA is a method that is widely used in the in-
dustry literature (Alsultanny, 2012; Eckhaus, 2010; Kalaoglu et al.,
2015; Kapgate, 2014; Wang & Cheng, 2007; Wenxia, Feijia, Shuo,
Kun & Guodong, 2015). We selected the WMA method as a method
of interest because it belongs to the moving average methods, and
more specifically a variant of the SMA method. The narrow dif-
ference in weights between the SMA and the WMA methods sug-
gested a potential feasibility (uniqueness of demand process prop-
agation) of the DDI approach in a decentralized supply chain. Such
as SMA method, the WMA method is based on the shifting for-
ward of the last N observations in order to predict the future. Ev-
ery time-period, the oldest observation is excluded and the most
recent observation is included.

Table. 1 summarizes the experimented forecasting methods in
the context a DDI strategy as well as our contribution.

Forecasting method =~ Mathematical expression

DDI feasibility Reference

MMSE Jei1 =EDe1/{De, Dy 1, ..., D; t}) Not feasible Ali and Boylan (2011)
e {D:,D¢_q,...,Di_1} is the available set of demand
history r
SES fra=a) (1-a)yD.; Not feasible Ali and Boylan (2012)
j=0
« {Dt,D¢ 1, ..., D;_r} is the available set of demand
history
« « is the smoothing constant
SMA 1 Nt Feasible Ali and Boylan (2012)
frir =5 2 Dej Ali et al. (2017)
j=0
« N is the moving average horizon
N
WMA Jror = % Dy Feasible This paper
i=1

« N is the moving average horizon

e Xx=(x1,..., xy) is the weighted vector that is

obtained using Newton’s method

N
> xi=1
i1

iz
x>0Vi=1,...,N
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Thus, in this paper, we first show that demand inference is fea-
sible when the retailer uses the WMA method in his forecasts. The
upstream actor is then able to infer the demand arriving at his for-
mal downstream actor as the demand propagation is unique. Next,
the consideration of nonequal weights for the N past observations
in the WMA method, is achieved through the use of the Newton
optimization method aligned according to the minimization of the
MSE and thus according to the minimization of the upstream ac-
tor’s average inventory levels. In this way, this paper provides a
methodology that allows the reduction of the average inventory
level at the upstream actor. Since there are no specific “standard
approaches” for determining the optimal setting in terms of pa-
rameter N and lead-time L, we study the sensitivity of our ap-
proach’s results in comparison with the NIS strategy through the
MMSE method, and in comparison with the DDI strategy through
the SMA method. In addition, we present findings on the bullwhip
effect in order to obtain a clearer picture of this approach.

3. Modeling approach

We consider a simple two-level supply chain that is formed by
a manufacturer (upstream actor) and a retailer (downstream actor)
who receives the demand of a final customer. We suppose that
a periodic review system is adopted for replenishment in which
downstream actors place their orders with upstream actors after
examining their respective inventory levels. Indeed, after the re-
alization of demand D; by the retailer at the beginning of time
period t and after checking his own inventory level, the retailer
places an order Y; before the end of the period. Then, the manu-
facturer prepares the required order Y; and ships it to the retailer
who will receive it at period t + L + 1. Here, L presents the replen-
ishment time of both production and shipment. Second, it is as-
sumed that there are no order costs. Second, the unit inventory
holding costs and shortage costs are constant and respectively de-
noted by h and s. It is also assumed that both the manufacturer
and retailer adopt an order-up-to (OUT) policy, which minimizes
the total costs over an infinite time horizon (Lee et al., 2000).

These assumptions were adopted in many papers of this stream
of research (Ali et al., 2017; Ali, Boylan & Syntetos, 2012; Hosoda
et al., 2008; Hosoda and Disney, 2006; Cheng and Wu., 2005; Al-
wan et al., 2003; Chen et al., 2000; Lee et al., 2000; Raghunathan,
2001; Tliche et al., 2019) and we consider our paper is part of the
continuity of this stream of works.

3.1. Customer’s demand model and forecast method

Time-series processes have widely been adopted to model the
demand of many products in different fields. Let us assume that
the demand at the retailer is a causal invertible ARMA(p, q) pro-
cess. Let D; be this demand process at period t, which is expressed
by equation (1) as follows:

14 q
Di=c+) ¢iDij+&+) 06 (1)

j=1 j=1

where

¢ > 0 is the unconditional mean of the demand process,

¢; where j e {1, .., p} is the autoregressive coefficient of the de-
mand process,

0; where je {1, .,q} is the moving average coefficient of the
demand process, and

&N — (0, 052) where t € [0, +o0] is the independent and iden-

tically distributed error term that follows a normal distribution.

Furthermore, let d; be the mean-centered demand process, (14
be the unconditional mean of the demand process D; and y; =
Cov(D; k. Dy) be the covariance between demands at periods t

and t + k. These definitions are required for the formulas’ deriva-
tions in this work.

In addition, as mentioned above, we will consider that the re-
tailer adopts the WMA method in the demand forecasts, which, at
period ¢t + 1, is mathematically written as equation (2):

N
fe= in Dy (2)
i=1

where x; is the weight that is associated with the customer’s de-
mand occurring at time period t + 1 —i, which verifies the set of
N X

= 1
;X‘_l ,and let x=(:) be the
x;>0Viefl,..., N} XN

constraints (C) : {

weighting vector.
To apply DDI strategy, it is first important to check whether the
propagation of the demand across the supply chain is unique.

3.2. Downstream actor’s orders time-series structure

Let Y; be the order process arriving at the manufacturer at pe-
riod t, which is expressed by equation (3) as follows:

p N q -
Ye=c+ ) @Y j+&+) 0k ; 3

j=1 j=1

where

¢ > 0 is the unconditional mean of the order process,

¢; where j € {1, .., p} is the autoregressive coefficient of the or-
der process,

0; where j e {1,...q} is the moving average coefficient of the
order process, and

~ N-1

E > N(O,[L2(2 + 2%+ Y (Xipq — %)) +2Lx; +1] o2) where

i=1
[0, +0c0] is the independently and identically distributed error term
that follows a normal distribution.

The demand and order processes have the same autore-
gressive and moving average coefficients, and they differ only
by their respective error terms (see Appendix A). Indeed,
the order’s error terms are amplified by a coefficient =

N-1
23 +x3+ Y (X1 — %)) +2Lx; +1 such as cré__? = ﬂag. Conse-
i=1

i=
quently, the order process is unique and the upstream actor is
able to infer the demand process without the need for demand
information sharing. Next, we derive the manufacturer’s forecast
MSEPP! and PPT when the WMA method is used in a context of
a DDI strategy. The performance metrics MSEPP! and P! are con-
sidered since they are the first direct measures impacted by de-
mand inference. Indeed, the upstream actor benefits from the DDI
strategy that enables the reduction of the MSE and the average in-
ventory level. The next consequence is then the reduction of the
inventory costs related to these metrics’ enhancements.

3.3. Derivation of the manufacturer’s mean squared error and
average inventory level expressions

Since the forecast expression in equation (2) is a function of
the weights, the MSEPP' and [PP! expressions are also functions of
these weights. We derive the MSEPP! (x) and JPP!(x) expressions as
follows:

L+1 L+1

MSEPP! = Var| 3 (Desi — fiai) | =Var| Y Deyi— (L+1) fei
i=1 =1
L+1

& MSEP™ =Var| 3 Dy | + (L+ 1)*Var(fiz1)
i=1

te
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i=1

L+1
—2(L+1)Cov (Z‘ D, le) (4)

We then derive the three components of Eq. (4a) (see Appendix
B) and obtain the final expression of Eq. (4) as follows:

MSEPY (x)

L
= L+Dyo+2> i Y
i-1

N N-1 N
+(L+1)2 Yo ZX,’z-FZZ X Z XiVi_j
i1 =1\ s
L+1 N
“2L+1) Y XYy (4)

i=1 j=1

Next, the general expression of the average inventory level un-
der an OUT policy is given by Ali et al. (2012) and mathematically
written as Eq. (5a) as follows:

5 L+1
It = Tt ZYtH

where Y; is the order process of the retailer arriving at the man-
ufacturer at time period t; the manufacturer’s optimal OUT in-
ventory level T; is expressed by T; = M; +KO’S~W, where M; and
V are respectively the conditional expectation and the conditional
variance of the total demand over the lead-time plus one review
time unit; and K = F N . 1)( 5 +h) is the inverse distribution function
for the standard normal distribution that is calculated at the ratio
point S%h

Consequently, under the DDI strategy and using the WMA
method for the demand forecasts, we obtain Eq. (5b) as follows:

LE (Yr)

(5a)

7DDI DDI - E(Yt)
[FZx) =T (%) - E(Z Ym) +— (5b)
i=1
where TP (x) = McP” (x) + Kog /VPPI (x)
Then, the Eq. (5b) is equivalent to the following Eq. (5¢):
7DDI DDI & EY)
I[P (%) = M7 (x) + Kog/ VPP (x) — E(Z Yt+i> +— (5¢)
i=1

We then derive the four components of equation (5¢) (see Ap-
pendix C), and thus, we obtain the final expression of equation

(5) as follows:
m + Kag,/MSEDD’(x (5)
j

We note that JPP!(x) in equation (5) is a nonlinear function of
MSEPDI(x), which can explain the nonproportional evolution link-
ing these two performance metrics. Next, we proceed to deriving
the resulting bullwhip effect in order to compare the processes
variations’ evolution with the cases where the NIS strategy with
the MMSE is adopted, and then to compare it with the case where
the DDI strategy with the SMA method is adopted.

R OE

3.4. Bullwhip effect

In this subsection, we are interested in studying the bullwhip

effect occurring in the considered supply chain. Let ¥;, 4 ; and ¥/;
be the infinite moving average representation (IMAR) coefficients
of the orders processes in the cases where the WMA, SMA and
MMSE methods are adopted for the demand forecasts, respectively.

First, when the WMA method is used in order to fore-
cast the customer’s demand, the ARMA(p,q) demand process at
the retailer where & is the error term that transforms into

an ARMA(p,q) order process at the manufacturer, where &, =
N

L[Z]Xi(frfm
i=

time L, the parameter N and the IMAR coefficients ; and 1/}1 of
the demand and order processes, respectively, the bullwhip effect
is measured by Eq. (6) as follows:

—&_;) +&] is the error term. Considering the lead-

BWef fectVMA(x) = “//::((;tt))
N-1 Z wZ
= [L2<x%+x,%+;(xf+l —xi)2> + 2Lx; +1:|(Z =7 )

(6)

Second, when the SMA forecasting method is adopted, the
ARMA(p, q) demand process for the retailer where & is the error
term transforms into an ARMA(p, q) order process at the manufac-

turer, where &, = (& + 1)& — L& is the error term (Tliche et al,
2019). Considering the lead-time L, the parameter N and the IMAR

coefficients v/; and 1&1 of the demand and order processes, respec-
tively, the bullwhip effect is measured by equation (7) as follows:

~2
Var(Y,) 212+ N2 +2NL [ Y5V,
Var(D;) N2 Y

BWef fectSMA = (7)

Third, when the MMSE forecasting method is adopted by the
retailer, the ARMA(p,q) process at the retailer transforms into
an ARMA(p, Max(p, q — L)) process at the producer (Zhang, 2004).
Considering the IMAR coefficients of demand and orders processes,

respectively, ¥; and ¥ j» the ratio of the unconditional variance of
the orders process to that of demand process, namely the Bullwhip
effect is measured by equation (8) as follows:

2 ~2
Var(Y;) YoV
= Var(Dy) <Z %) S %j (8)

j=0

BWef fectMMSE —

Furthermore, considering the obtained expressions of Eqs. (6),
(7) and (8), we simply consider the ratio of BWef fectWMA to
BWef fectMMSE and the ratio BWef fectWMA to BWef fectSMA, In this
manner, we obtain ideas about how the bullwhip effect behaves
when switching from a NIS strategy with the MMSE method to a
DDI strategy with the WMA method (case 1), and when switching
from a DDI strategy with the SMA method to a DDI strategy with
the WMA method (case 2). Let denote the bullwhip effect evolu-
tion of the case 1 by BEEWMA = which is expressed by Eq. (9) as

MMSE®
follows:
BEEWMA BWeffECtWMA (X)
MMSE = TBi/e f fectMMSE
[12(3 +x2 + 215 (i —x0)%) + 20 + 1] [ X155 92
- L 2 X2
(X0 ) et
9)

Now, let denote the bullwhip effect evolution of the case 2 by

BEEYMA, which is expressed by Eq. (10a) as follows:

BWef fectWMA

WMA
BEEswa” = BWef fectSMA
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N2[12(6 + %+ 05 (in = x)°) + 2L + 1] [ T 07
212 + N2 + 2NL o 32
YV

(10a)

We note here that 1/71- are equal to 1ﬁj for j from O to +oo since
the order processes Y; keep the same coefficients ¢; and 6; of the
demand processes in the cases where WMA and SMA methods
are adopted, respectively. Indeed, the only difference between the
two structures of Y; is in the error terms. Hence, equation (10a) is
equivalent to:

BWef fectWMA
BWef fectsMA

_ NZ[LZ (X% + X3+ T (K1 — Xi)z) +2Lx + 1] (10)

- 212 + N2 4-2NL

The mathematical expression of Eq. (10) is not a linear func-
tion. Studying this equation is not a straightforward task since it
does not allow one to understand the domains in which BEE{MA
is inferior or superior to 1. Therefore, we suggest some simulations
for this metric in Section 4 to have an approximate idea of the gap
of the bullwhip effect, such as separating the situations in which

WMA and SMA are adopted. Note that BEEMA will be noted by

BEE¢ /ANeWm since the vector x in the simulation section is the
Newton’s optimal weighting.

Once the analytical expressions for the different supply chain
performance metrics are derived, we proceed to detail the problem
model and the resolution method.

BEEg 2" =

3.5. Newton method for optimal weighting

We assume that the manufacturer aims to minimize his aver-
age inventory level when forecasting over the time period L + 1. In
this work, this inventory-oriented enhancement is the main engine
of the supply chain surplus. Indeed, if the possibility of inventory
level minimization still exists, then the value of this gap is con-
vertible to a monetary value that can be shared across the supply
chain. To do this, since the inventory expression in equation (5) is
a function of the MSE, the manufacturer is recommended to simply
determine the weighting vector x* that minimizes this MSE. Then,
the expression of the MSEPP!(x) in Eq. (4) is replaced by the ob-
tained value MSEPDPI(x*), and the optimal average inventory level
IPPI(x*) is then determined. Let us first define the MFOP, which
can be expressed as follows:

minimize MSEP!(x)

N
ZX,‘ =1
i=1

(MFOP) : subject tod % =0 Vie{1,....N}
X1
X = :
XN

There are several methods that can be applied to solve such
problems. In this paper, we select the Newton’s method, a
gradient-based iterative optimization algorithm that is widely used
in the literature because of its ease of implementation and quick-
ness of resolution since the convergence is quadratic (Qi & Sun,
1999). For a positive quadratic convex function defined on R, the
minimum is reached if the derivative function is equal to 0 and
the second derivative function is positive on R. We then talk about
the 1st order and 2nd order optimality conditions. The Newton’s
method is suitable for the optimization in this setting because of
the mathematical nature of the MSE. Indeed, the MSE is positive

and of quadratic convex nature defined on R™. The 1st optimal-
ity conditions (considering the constraints of the weights) are pre-
sented by the KKT formulation shown next. The 2nd optimality
conditions (always considering the constraints of the weights) are

k
presented by the Hessian matrix Vg(;k) also shown next, which

must be a semi-definite positive matrix. This statement is not ev-
ident because of the complexity of the matrix components. How-
ever, a matrix is semi-definite positive if and only if all of its eigen-
values are non-negative (Vandenberghe & Boyd, 1996). In practice,
we verified this condition in our simulations.

For the purpose, we go on to state our resolution methodology.
We first modify the constraints’ form of the MFOP into a matrix
form and then the problem is rewritten as follows:

minimize MSEPP! (x)
xet <1
—xel<—1
—-x;<0 Vie{l,...,N}

(MFOP) : st e=

minimize MSEPP! (x)
et
Ax<b, A=/[-e and
—In [N+2,N]
1
b=|-1

On [N+2,1]

< (MFOP) : {st.]e= ,On=1": ,

[N1] [N1]

(N.N]

We first define the necessary Karush-Kuhn-Tucker (KKT) first
order optimality conditions that are associated with this problem
as follows (Gordon & Tibshirani, 2012):

(1): MEZ | AL = 0y
2): Ai(Ax—=Db);=0, ie{1,...,1}
Ax <b
Ai>0,ie{l,...,1}
r=N+2
(KKT) :
X1
s.t. X = :
XN
A
A= :
Ar

We note here that 2; is simply a parameter of the constraints’

satisfaction and is not related to our analysis. Next, in order to de-

. DDI . .
rive MEZ() " the MSEPP!(x) function must be rearranged in the
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following form:

j=1 i=j+1

N N-1 N
MSEPP! (x) = (L+ 1)*yo inz +2(L+1)? Z (Xj Z XiVi_j>
i=1

I+1 N L

20+ 1) > XY+ L+ DY +2 Y i Vi

i=1 j=1 i=1

We separate the four components of the rearranged MSEPP!(x)
expression, and we denote them as follows:

N
Gx) = @L+1)*0 ) x% = L+ 1) yoxIyxt

i=1

N-1 N
G =2(L+1)* )] (xj > xm_j>

j=1 i=j+1

L+1 N L+1
G ==-2L+1)) > X¥irja=-2L+ | DY |x
i=1 j=1 i=1
Vi

where Y; = Li=1,... ,L+1

VieN-1

L
G =C+Dyo+2) i Vi

i=1

We then derive the derivative functions of the four MSEPP!(x)
components as follows:

0C; (x
5)5 ) =2(L+1)% y Iy x,
— _
2 XiVji-1|
i=1
i%1
GKx) 2 :
o = 2L+ ) : :
N
2 XiVjion|
i=1
[i#N
G (x) _ t
B = 2L+ 1Y
where
L+1
; Vi
y=| = |,
LN
> v
i=N
and
G (x)
ox O

Then, the derivative function of MSEPP!(x) is finally expressed
as follows:
AMSEPP! (x)
0x

2 N L+1
2L+ 1) yoxr + Dy | =20+ D X ¥
i—1 i=1
i

2 N L+N

2L+ 1)) voxn + 2 Xivji-n) | —2(L+1) X v
i=1 =N

L iN dvg

In a second step, we denote G(x) = % + AfA, and then
KKT is equivalent to the following nonlinear equations system
(NLS):

. G(x, A) =0y
(NLS) : {A,-(b—Ax)i =0, 4;>0, (b—Ax); >0, ie{l,...,1}
Proposition (Chen, Chen & Kanzow, 2000a):
Ifa>0 and b>0, thenab=0<« ¢@(a,b) =0 with ¢(a,b) =

a+b—+/a2+ b2
By applying the Proposition to (NLS), we obtain the following
system (NLS'):

G(X, )\.) :ON
(NLS') + 3 ity (b= AX);) = Ai + (b — Ax); — /A% + (b — Ax) 2
=0, ie{l,....1}

G(x, 1)
¥ (x, A)

requires solving the following nonlinear equation (S):

Xk+1 Xk B xk xk
S): ()J(H) = ()»k) - Vg 1(}\k>'g<)\k>

The resolution of such an equation requires the computation

Next, let g(;i) =( ) = On,r. Consequently, solving (NLS')

k
of the inverse of the Hessian matrix Vg‘l(;k) at each iteration k,

which could be expensive in terms of time and memory. The best
solution is then to solve a linear system using the Pivot-Gauss
method (Sorensen, 1985). For any linear system of the form Ax =
b, the Pivot-Gauss method consists of staggering the system by
making changes to the rows of matrix A of the type L; « L; + al;
to obtain the solution at the end a triangular matrix. Finally, solv-
ing (S) amounts to solving the following linear equations system
(LS):

xk xk
(LS) : Vg(kk)Au" = _g<kk)

A Xk Xk+1 _ Xk

where Auk = (A)J‘) = ()\zm B Ak) and

‘ AG(x*,A%) 3G (x*,2k)
X ox A
Vg<kk) - |:81ﬂ(xk.kk) aw(xk,xk):|
ax EES [N+r, N-+r]
with
BG(x",)J‘) a2MSEDD’(xk)
X - ox2
2(L+ 1)’y 2(L+1)*yj1-y
2(L+ 1)y 2(L+ 1)y
dG(xk, 1K) _a
oA ’
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Y (x*, 1K) (b—Axk) A
S s 2
(M) + (b—Ax);
81//(2(", )\.k) (1= )\i I
g 08+ (-]

In this section, we established the transformation of the
quadratic problem MFOP into a system of linear equations (LS).
The use of the Pivot-Gauss method allows for the reduction of the
execution time that is necessary to obtain the Newton'’s results.

We conclude this section by summarizing the collaborative pro-
cess in the considered supply chain. The manufacturer signs an
income-sharing contract with the retailer. The latter agrees to
adopt the WMA/Newton method in his demand forecasting, thus
allowing the demand inference at the manufacturer. The manufac-
turer implements the Newton’s method to obtain the optimal al-
location vector according to his average inventory level. Once the
system (LS) is solved, the manufacturer passes the information
on the allocation vector to the retailer who will implement this
weighting in his WMA forecasting method. The reduction of the
MSE and consequently the average inventory level at the manufac-
turer, generates savings that will be shared with the retailer.

4. Simulation results and discussion

In this section, we carry out some simulated experiments of our
implementation, namely, the resolution of some examples that will
serve to validate the approach. Then, we discuss the observed re-
sults compared to the NIS strategy with the MMSE method and
compared to the DDI strategy with the SMA method.

4.1. Implementation of newton’s method

Using the MATLAB software, we implemented the Newton'’s
method for solving a quadratic problem under linear constraints.
We adapted the general form of the quadratic problem to coincide
with our MFOP and then conducted simulations by solving some
problems using different predefined demand processes. The pseu-
docode of the Newton's algorithm is shown as follows:

Newton’s algorithm:
> Input of the problem data N,L, A, band y; forie{1,..., N+L}
> Input of the algorithm parameters:
imex (mMaximal iterations number) and & (maximal accepted error)
x? A9
> Entry of the initial estimates: k=0, x%=(:)and A= (:)
X9 A0
N r
k+1 k

k —_
> While g(ik) >¢gor ;f,m 7';,( > & or k < imax

Xk xk
m Compute g(kk) and Vg(M)
k k
m Solve Vg(;ik)AAuk = —g(;k) using the Pivot-Gauss method and deduce

k+1 k k Axk
Gre) = G+ Atk = G0+ ()
mk=k+1
End

> If k = imax, then the algorithm diverges and it will be necessary to change
the initial point x°.

4.2. Simulation experiments

In this first part of the simulation, we consider the demand
models in, which are causal invertible ARMA(p, q) models, and we
vary the autoregressive parameters ¢; where j=1,..., p and the

moving average parameters 6; where j=1,...,q. Since it is im-
possible to infinitely compute the IMAR coefficients, we only com-
pute the first 1000 v -weights for all simulated ARMA(p. q) de-
mand processes. Then, we conduct comparative studies between
the cases where NIS with MMSE and DDI with WMA/Newton,
and a comparative study between the cases where DDI with
WMA/Newton method and DDI with SMA method, for the fol-
lowing fixed parameters: c=10, c2=1, L=5 N=12, h =
1, and s = 2. The optimal ponderation vector is obtained by ap-
plying the Newton’s method. The chosen parameters of Newton’s
algorithm are as follows: & = 10> and imgy = 100. The initial solu-
tion can be arbitrarily chosen as long as it is in the realm of fea-
sible solutions. The eigenvalues of the Hessian matrix are positive
and for different initial solutions corresponding to multiple simula-
tions on the same problem, the optimal solution is always unique.
This ensures the global optimality of the Newton’s solution. Finally,
the Newton'’s algorithm does not exceed a dozen iterations and the
elapsed time is on the scale of a second using the Windows 7 pro-
fessional operating system.

4.3. Comparative studies

The following tables present the findings of our simulations
on 20 different demand models. We selected 20 different demand
models used in the simulation for the simple reason of multiple
illustrations, where we variate autoregressive and moving average
parameters of the demand processes. Multiple simulations procure
more credibility about the robustness of results. Table 2 shows
the coefficients of the demand processes and the obtained New-
ton’s optimal weights for the N past observations. Table 3 shows
the simulation results of the MSE and I;, respectively, when the
NIS strategy is adopted, when the DDI strategy with the SMA
method is adopted, and finally when the DDI strategy with the
WMA/Newton method is adopted.

Table 3 reports two important results. The first one is that
this table exhibits the effectiveness of the DDI strategy with
WMA/Newton compared to the NIS approach. Therefore, the DDI
strategy remains valuable when there is no information sharing
mechanisms, regardless of the used forecasting method. Besides,
based on simulated models in Table 3, the WMA method with the
Newton'’s allocation proves its efficiency by outperforming the SMA
method with regards to the two performance metrics. It's about
the second result where this table proves that decision-makers
in supply chains can enhance their DDI performance and market
competitiveness by simply considering the optimal weighting that
is generated by Newton’s method, rather than considering an eq-
uitable weighting of the order of 1/N. As expected, the enhance-
ment of the two metrics is different when we vary the autoregres-
sive and the moving average parameters of the demand processes.
This is due to the nonlinear relation mentioned above in equation
(5) that connects the forecast MSE to its effective consequence, the
average inventory level.

Besides, since there are no specific “standard approaches” for
determining the best configuration, and for investigation purposes,
we study in the next subsection the sensibility of these metrics
according to the lead-time L and moving average parameter N val-
ues. For illustration purposes, we consider an arbitrary example of
an ARMA(3, 2) demand process, which is defined as follows:

D;=10+0.6 D; 1 +04D; 1 —03D;_1+& +0.1&_1+0.08 &,

4.3.1. Comparison between the ddi strategy with WMA/Newton
method and the nis with mmse method with respect to lead time
and moving average parameters

Based on the comparison between DDI with WMA/Newton re-
sults and NIS with MMSE results, we study the sensibilities of the
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Table 2
Optimal Newton's weights for ARMA(p, q) demand models .

Demand model  Autoregressive and moving Newton weights vector x*
average coefficients

1 é1 = 0.400 (0.2218; 0.0667; 0.0667; 0.0667; 0.0667; 0.0667;

0.0667; 0.0667; 0.0667; 0.0667;0.0667; 0.1112

5 1 0,500 0.2835; 0.0597; 0.0597; 0.0597; 0.0597; 0.0597;
=" 0.0597; 0.0597; 0.0597; 0.0597;0.0597; 0.1194
3 1 — 0,600 0.3653; 0.0508; 0.0508; 0.0508; 0.0508; 0.0508;
=" 0.0508; 0.0508; 0.0508; 0.0508; 0.0508; 0.1269
4 0, — 0,400 0.1727; 0.0370; 0.0913; 0.0696; 0.0782; 0.0749;
1= 0.0758; 0.0764; 0.0739; 0.0806; 0.0636; 0.1061
5 6, — 0,500 0.1952; 0.0143; 0.1046; 0.0596; 0.0818; 0.0714;
1= 0.0753; 0.0760; 0.0704; 0.0837;0.0560; 0.1118
6 0 — 0.600 0.2116; 0.0000; 0.1171; 0.0467; 0.0880; 0.0659;
1= 0.0756; 0.0756; 0.0659; 0.0880; 0.0476; 0.1171
. ¢ = 0.400 0.2397; 0.0567; 0.0661; 0.0656; 0.0656; 0.0656;
6; = 0.051 0.0656; 0.0656; 0.0656; 0.0657;0.0631; 0.1149
s ¢ = 0.400 0.2569; 0.0455; 0.0666; 0.0645; 0.0647; 0.0647;
6; = 0.100 0.0647; 0.0647; 0.0646; 0.0652;0.0593; 0.1186
9 ¢ = 0.400 0.3186; 0.0000; 0.0752; 0.0575; 0.0628; 0.0613;
6; = 0.300 0.0615; 0.0621; 0.0596; 0.0680; 0.0400; 0.1334
10 Z)lfg;‘gg 0.3550; 0.0000; 0.0449; 0.0692; 0.0574; 0.0586;
1= 0.0593; 0.0585; 0.0616; 0.0565; 0.0413; 0.1378
6, = 0.100
1 g’l_:g;‘gg 0.3733; 0.0000; 0.0271; 0.0758; 0.0572; 0.0557;
1= 0.0582; 0.0578; 0.0624; 0.0504; 0.0420; 0.1400
6, =0.150
- g"fg';gg 0.3909; 0.0015; 0.0068; 0.0829; 0.0593; 0.0514;
1= 0.0567; 0.0583; 0.0631; 0.0441;0.0428; 0.1423
6, = 0.200
¢ = 0.400
13 zl fgfgg 0.4138; 0.0091; 0.0259; 0.0590; 0.0410; 0.0602;
2= 0.0562; 0.0493; 0.0551; 0.0464;0.0425; 0.1415
65 = 0.060
64 = 0.050
14 g fgf;’g 0.2194; 0.1045; 0.0584; 0.0630; 0.0626; 0.0626;
2= 0.0626; 0.0626; 0.0627; 0.0614:0.0742; 0.1059
6; =0.100
¢ =0.200
5 gz fg'gg 0.2806: 0.1607: 0.1142; 0.0694; 0.0308: 0.0347:
3= 0.0344; 0.0336; 0.0415; 0.0509; 0.0615; 0.0878
¢4 = 0.100
6; =0.100
¢ =0.200
¢, =0.150
% ¢3 = 0.120 0.3018; 0.1767; 0.0979; 0.0623; 0.0261; 0.0321;
¢4 = 0.100 0.0335; 0.0318; 0.0389; 0.0463;0.0629; 0.0899
6; =0.100
6, = 0.065
¢ =0.200
¢, = 0.150
¢3 = 0.120
17 ¢4 = 0.100 0.3293; 0.1994; 0.1171; 0.0501; 0.0000; 0.0177;
6; = 0.100 0.0256; 0.0257; 0.0357; 0.0468;0.0629; 0.0898
6, = 0.065
65 = 0.060
64 = 0.051
¢ = 0.200
¢, = —0.150
¢3 = 0.120
18 g“f‘oobé%o 0.1484; 0.0679; 0.1154; 0.0721: 0.1023; 0.0792;
5= 0.0672; 0.0589; 0.0657; 0.0760; 0.0606; 0.0865
¢ = 0.070
¢7 = 0.060
¢s = —0.051
6; = 0.100

(continued on next page)
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Table 2 (continued)
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Demand model  Autoregressive and moving

average coefficients

Newton weights vector x*

é1 = 0.200
¢ = —0.150
¢ = 0.120
¢4 = —0.100
¢s = 0.080
19 ¢ = 0.070
¢; = 0.060
¢s = —0.051
6; = 0.100
6, = 0.060
é1 = 0.200
¢> = —0.150
¢ = 0.120
¢4 = —0.100
¢s = 0.080
¢ = 0.070
20 ¢7 = 0.060

¢s = —0.051
6; = 0.100
6, = 0.060
65 = 0.040
6, = 0.010

0.1614; 0.0772; 0.1089; 0.0709; 0.0992; 0.0770;
0.0627; 0.0550; 0.0642; 0.0734;0.0617; 0.0884

0.1712; 0.0842; 0.1169; 0.0648; 0.0958; 0.0730;
0.0592; 0.0499; 0.0600; 0.0737;0.0627; 0.0887

Table 3

SE and I; results for ARMA(p, q) demands when NIS, DDI with SMA and DDI with WMA/Newton methods, are adopted.

NIS with MMSE method

Demand Model

DDI with SMA method DDI with WMA/Newton method

MSENIS iZ\IIS MSEDD! T[DDI MSEDDIx I"[DDI*
1 67.3756 19.6936 20.3867 11.5614 19.4392 11.4855
2 138.3996 33.0452 26.7926 14.3894 24.6456 14.2098
3 300.1029 62.3794 36.5808 18.7090 31.8348 18.2922
4 11.7600 7.8951 16.2400 07.4301 15.8909 7.4038
5 13.5000 8.5608 18.5000 07.7789 17.9541 7.7376
6 15.3600 9.3215 20.9400 08,1536 20.1583 8.0942
7 74.3786 21.3331 22.3074 11.8812 21.0996 11.7838
8 81.4330 23.0569 24.2527 12.2041 22.7645 12.0835
9 113.5408 31.7447 33.2078 13.6816 30.2764 13.4401
10 131.3007 37.0936 37.4282 14.4392 33.4410 14.1049
11 140.6645 40.1215 39.6913 14.8415 35.1010 14.4536
12 150.3507 43.2234 42.0563 15.2594 36.8125 14.8132
13 166.6726 48.7798 44.6284 15.8453 38.2068 15.2839
14 49.8496 17.7593 19.6140 10.8756 18.5583 10.7887
15 82.8049 34.5483 24.1279 15.9735 20.8552 15.6680
16 90.6387 37.3469 26.5067 16.4101 22.4153 16.0256
17 99.4028 41.1695 29.7530 17.0342 23.9784 16.4813
18 14.6534 10.3757 12.8447 8.4158 12.5980 8.3972
19 15.5426 10.5792 13.8480 8.6012 13.5038 8.5747
20 16,4370 10,6580 14.4736 8.7396 14.0079 8.7030

two performance metrics with respect to the lead-time L and the
moving average N. In the cases where the lead-time L is fixed and
N varies, Fig. 1 presents the simulation results in terms of the
MSEPP! and PP improvements in percentages. These improvement
percentages are computed as follows:

MSEPD™ — MSENIS

MSEPPT_Improvement = ' ISENS x 100
and

iDDl* _ TNIS
PP _Improvement = thTt x 100

The obtained results in Fig. 1 show that the evolution of the
improvements with respect to N is a linear function. This means
that the more the parameter N increases, the more the DDI strat-
egy with WMA/Newton is more efficient in comparison with the
NIS approach. This result is expected since the parameter N does
not interfere in the MMSE method used in the NIS approach. In
terms of MSE and average inventories, managers are advised to in-

crease their parameter N as well as possible while their lead-time
is constant.

In the same way, Fig. 2 schematically presents the simulation
results in terms of percentage improvements where the moving av-
erage parameter N is fixed and the lead-time L varies.

The same reasoning is adopted. The obtained results in Fig.
2 show that the evolution according to L is a logarithmic function.
That is, for a fixed parameter N, the evolution of the enhancement
in percentage becomes less important as the lead-time L becomes
more important. Indeed, for low values of L, the evolution in per-
formance is important in comparison with cases where the values
of L are high. This result further confirms that the lead-time value
always plays an important role in the performance of the supply
chains.

4.3.2. Comparison between the ddi strategy with WMA/Newton
method and the ddi strategy with sma method with respect to lead
time and moving average parameters

Based on the comparison between DDI with WMA/Newton re-
sults and DDI with SMA results, we study the sensibilities of the
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Fig. 1. Improvements of adopting DDI strategy with WMA/Newton method rather than adopting NIS strategy according to the moving average parameter N.
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Fig. 2. Improvements of adopting DDI strategy with WMA/Newton method rather than adopting NIS strategy according to the moving average parameter L.

two performance metrics with respect to the lead-time L and the
moving average N. In the cases where the lead-time L is fixed and
N varies, Fig. 4 presents the simulation results in terms of the
MSEPP! and PP improvements in percentages. These improvement
percentages are computed as follows:

MSEPPI" — MSEDD!

MSEPP!_Improvement = VISEDDT

x 100

and IPP'_Improvement = Iﬂfm'l?#l x 100

The obtained results in Fig. 3 show that the evolution of the im-
provements with respect to N is a concave function. These numer-
ical results show that this function attains its maximal enhance-
ment at N = 10 for L = 5. This corresponds to a 7.44% improvement
in the average inventory savings. Otherwise, the enhancement is
not optimal, but it still exists. In practice, the decision-makers can
conduct some simulations by varying the parameter N over a fixed
interval and then by choosing the value that maximizes this en-
hancement.

In the same way, Fig. 4 schematically presents the simulation
results in terms of percentage improvements where the moving av-
erage parameter N is fixed and the lead-time L varies.

The same reasoning is adopted in Fig. 4. The obtained results
show that the evolution according to L is also a concave function.
These numerical results show that this function attains its maxi-
mal enhancement at L = 3 for N = 12. This corresponds to a 7.65%
improvement in the average inventory savings. Generally, the lead-
time value does not change since it depends on the transportation
and logistics systems, and managers do not truly have the power
to easily manipulate its value.

4.3.3. Evolution of the bullwhip effect

In this subsection, we study the evolution of the bullwhip ef-
fect that is associated with the WMA/Newton forecast method.
Thus, we consider an example of an ARMA(2,2) demand process
with the following fixed parameters set: ¢ =10, ¢; =04, ¢, =
0.2, 6; =0.15, 6, =0.10 and 052 =1. We mainly compute the

BEEy e /N and BEE¢y/*/N°"'*" indicators in Egs. (9) and (10)

in order to approximate the gap of the bullwhip effect, thereby
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Fig. 3. Improvements of adopting DDI strategy with WMA/Newton method rather than adopting DDI with SMA according to the moving average parameter N.
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Fig. 4. Improvements of adopting DDI strategy with WMA/Newton method rather than adopting DDI with SMA according to the lead-time L.

separating on one hand, the DDI strategy with the WMA/Newton
method to the NIS strategy with the MMSE method, and on the
second hand, the DDI strategy with the WMA/Newton method to
the DDI strategy with the SMA method. While these indicators are
functions of the moving average N and lead-time L, we also check
the variations according to these two parameters.

Fig. 5 illustrates the behavior of the evolution of the bullwhip
effect when an actor switches from the MMSE method in a NIS
strategy to the WMA/Newton method in a DDI strategy. For a

fixed configuration of the parameter N, the performance of the
WMA/Newton method becomes more important as the lead-time
L decreases. In this example, for N =8, DDI with WMA/Newton
is valuable in terms of bullwhip effect if the lead-time value is
equal to 2. Next, for a fixed lead-time L, the performance of the
WMA/Newton method is more valuable as the parameter N in-
creases. In terms of L, the results show that the value of the break-
point N increases as the lead-time L increases. This is expected as
generally, the performance of the MMSE method compared to the
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WMA/Newton improves with increasing the lead-time value. On
the other hand, the results show that the break-point L decreases
with the value of N as the performance of WMA/Newton improves
with the length of the history being used. We conclude that for
each value of the lead-time L, there exists a unique threshold of
N from which the DDI strategy with the WMA/Newton method is
more valuable than the NIS strategy with the MMSE method, in
terms of bullwhip effect.

Fig. 6 illustrates the behavior of the bullwhip effect when the
SMA and WMA/Newton methods are used in the forecasts. There
are two important results. The first one is that the SMA method
outperforms the WMA/Newton method in terms of bullwhip ef-
fect. Indeed, for the simulated data, the BEEj %N results
are always greater than one. This is due to the unequal weights
that are associated with the N past observations in equation (2).
This can be argued to be a limitation of the WMA/Newton ap-
proach compared to the SMA method, since the SMA method pro-
vides lower variability of order processes. The second one is that
the BEEgu /""" indicator increases with N or L. The results
also show that these amplifications evolve in a quasi-logarithmic

manner. That is, the increase in the indicator becomes less impor-
tant as one of the two parameters increases. Hence, the bullwhip
effect amplifies in the case of a DDI strategy where the down-
stream actor decides to switch from the use of the SMA method
to the use of the WMA/Newton method. The amplified bullwhip
effect is surely critical if the upstream actor doesn’t use a safety
stock as a buffer against orders variations. Indeed, excess inven-
tory can result in waste, while insufficient inventory can lead to
poor customer experience and lost business. Thus, the upstream
actor is emphasized to use a reserve inventory in such context.

5. Discussion

In decentralized supply chains, actors often do not want to
share their private information, especially in regard to the mar-
ket demand. This variable is often considered as key data provid-
ing competitive power. Even when supply chain actors favor infor-
mation sharing, other issues (the trust in the shared data, infor-
mation leakage, high investment costs, systems compatibility, etc.)
may still persist.
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This work provides an initial attempt to introduce the WMA
forecasting method in a decentralized supply chain in which actors
favor adopting the DDI strategy. The propagation of demand pro-
cesses using the WMA forecast method is unique. The introduction
of the Newton optimization method allows for the quantification
of the weighting of past demand observations with the purpose
of minimizing the mean squared error and average inventory. The
study of the improvements, according to the parameters, shows
that supply chain decision-makers are able to estimate the opti-
mal parameter values. While simulations allow practitioners to ob-
tain general ideas and approximate settings, varying the lead-time
is not truly possible. However, they can easily change the moving
average while conducting forecasting as long as this value does not
exceed the historical time horizon.

It is first important for decision-makers to further reduce inven-
tory levels and gather additional savings. Indeed, the resulting re-
duction in the manufacturer translates into cost savings over time.
These savings are the most important engine leading to DDI adop-
tion. Our work shows through simulations that savings from the
WMA/Newton approach exceed the savings from the SMA method.
We estimate that Newton’s method itself is not expensive in terms
of the time implementation. While it is natural to expect a distri-
bution of these savings between the manufacturer and the retailer,
coordination is essential to achieve such improvements.

If the DDI strategy is adopted in a supply chain where actors
decide to adopt WMA/Newton method, the decision-makers are
faced with compromising the two major criteria axes: the fore-
casted mean squared errors and average inventory levels on one
side, and the bullwhip effect amplifications on another side. In this
paper, we have considered the enhancement of the forecast MSE
and inventory level metrics since they are directly related to av-
erage inventory costs over time. The bullwhip effect is then costly
to the supply chain if the upstream actor decides to base his fore-
casting only on the received orders process. However, in the case
of the DDI strategy, the upstream actor bases his forecasting on or-
ders and inferred demand at the same time. The knowledge of the
estimated parameters and error variance interfere in the reduction
of the MSE and the average inventory level at the upstream ac-
tor. If the supply chain is initially adopting a NIS strategy where
the MMSE method is used in the downstream forecasts, the down-
stream actor is emphasized to consider a high value of N (beyond
a certain break-point) in order to reduce the bullwhip effect. Else,
if the supply chain is initially adopting a DDI strategy where the
SMA method is used in the downstream forecasts, the subject of
bullwhip effect amplification can be critical if the upstream actor
decide to not use a safety stock as a buffer against orders varia-
tions. Consequently, the upstream actor needs to use a reserve in-
ventory in order to cover the orders variations.

Except for the optimal weighting information that must be
shared between the supply chain actors, this approach does not re-
quire further assumptions than those that are required by DDI with
the SMA method, namely, the knowledge of the demand process
(time-series structure) and its estimated parameters all along the
supply chain. Thus, it is also essential to consider the costs of such
coordination. These costs are primarily related to the implementa-
tion of the method itself (if another forecast method was adopted)
and the weighting information sharing.

Table 4
NIS and DDI results for ARMA(2, 1) demand process.

The WMA/Newton forecasting approach for the DDI strategy
can be established through different managerial contracts between
the manufacturer and the retailer. The literature on such contracts
is abundant. For example, the manufacturer may propose contracts
to the retailer based on principal agent relationships (Miiller &
Turner, 2005), the supply chain actors can negotiate through pro-
posals (Dudek & Stadtler, 2005; Taghipour & Frayret, 2013). Buy-
back (Chen & Bell, 2011) or price discount (Jain, Seshadri & Sohoni,
2011) contracts may also be proposed.

6. Generalization for multi-level supply chains

The DDI results where the downstream actor adopts the
WMA/Newton forecast approach can be extended to multi-level
supply chains where there is more than two actors. Let consider a
n-level supply chain where each downstream actor places an order
to his formal upstream actor after revising his inventory level. We
suppose that all actors accept to adopt DDI strategy through the
WMA/Newton method. It means that each actor i =2, 3,...,n will
use the WMA/Newton forecast method by considering the weight-
ing vector of his formal upstream actor i — 1. Then every upstream
actori=1, 2,...,n—1is able to infer the demand occurring at his
formal downstream actor i + 1. Notice that the first upstream actor
is not concerned about a specific forecast approach. Fig. 5 shows a
demonstration of such a multi-level supply chain.

In a set configuration such as Fig. 7, Actor 1 is generally a
supplier of raw materials who endures large inventory costs. Let
suppose a customer of a single product whose demand follows
an ARMA(p, q) process at the actor n. After revising his inventory
level, this actor will place an order at the actor n — 1. The order
process will keep the same autoregressive moving average struc-
ture as the demand but it will increase its error variability, as one
moves further up the supply chain. Moreover, for illustration, let
consider an example of an initial customer’s demand model of an
ARMA(2, 1) defined by:

Di=10+0,2D 1 +0,15D; 5+ & +0,1 & 4

where & — N(0, 1) is the standard normal distributed error at
period t. The order process arriving at the actor n—1 is also an
ARMA(p, q) process defined by:

Y, =10+0,2Y_1+0,15Y 5+ &+0,1 &4

where & Y is the normal error distributed error at period t, and
where x; are the Newton’s weights shared by the actor n — 1 and
used by actor n in his forecasts.

We present in Table 4 the different metrics values at actor n —
1 where NIS, DDI with SMA method and DDI with WMA/Newton
method are evaluated.

Reductions of MSE and average inventory level at Table 4 is im-
proving when moving from SMA method to WMA/Newton method.
In this example, DDI with WMA/Newton allows the actor n—1
to reduce his average inventory level by about 39% compared to
NIS and nearly 0,8% compared to DDI with SMA method. Such re-
ductions are translatable into real inventory savings if both actors
were favorable to collaborate through a benefit sharing contract.
That is, we suppose that the downstream actor is favorable to such
contract if he will gain a part of the savings at the upstream actor.

DDI with % of Reduction when adopting % of Reduction when adopting
Adopted strategy DDI with SMA WMA/Newton DDI with WMA/Newton rather ~ DDI with WMA/Newton rather
Metrics NIS forecasting forecasting than NIS than DDI with SMA
MSE 49.8496  19.6140 18.5583 62,7714 5,3823
I 17.7593  10.8756 10.7887 39,2504 0,7990
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Fig. 7. N-level supply chain where actors accept DDI while adopting WMA/Newton forecasting.

In the same way, let suppose every upstream actor i=
1,...,n—1 of a supply chain propose a revenue-sharing contract
to his formal downstream actor in order to convince him to adopt
WMA/Newton method. Let R; be the inventory savings of DDI
adoption, at actor i. We also assume that the costs of adopting
WMA/Newton are related to the Newton’s weighting vector infor-
mation sharing in addition of the implementation costs. Let C,."+l
be the sum of the Newton’s weighting information sharing cost at
actor i and the implementation cost at actor i + 1. The net profit of
such collaboration is then expressed by 77/*! = R; — C*! which will
be shared with the downstream actor i + 1 according to their con-
tract. Let B; be the proportion of the net profit 71}“ shared with
the downstream actor i+ 1, where S; verifies 0 < §; < 1. Then m;
the inventory savings of the actor i, resulting from concluding two
contracts of collaboration with actor i —1 and actor i+ 1 is ex-
pressed as follows:

T = /Bi—lnii,l + (1 - ,3,‘)7T§+1
T =Bisi(Rici —Cy) + (1= B)(Ri = C*1)

Note that for actor 1, there is no actor 0 and only one contract
can be established with actor 2 which implies 8y = 0 and n(} =
0. Consequently, m; = (1 — B1)(Ry — C12). In the same manner, note
that for actor n, there is no actor n+ 1 and only one contract can
be established with actor n — 1 which implies 8, = 0 and nrﬁ’“ =
0. Consequently, 7w, = B,;_1(Ry_1 = C)_,).

Now if we consider the whole n-level supply chain, the total
supply chain inventory savings from adopting DDI strategy with
the WMA/Newton method, where a revenue sharing contract is es-
tablished between every successive couple of actors, is expressed
as follows:

n-1
T +ZTL’,'+7T,~,
i=2

- C12) + 2 [,31‘4 (Ri—l - Cii—l)
)

qﬂ)] + IBn—l (Rn—l -

The last total profit equation proves that the DDI approach with
WMA/Newton forecasting improves the performance of the en-
tire decentralized supply chain, as well as DDI with SMA method
does. The enhancement is much more considerable compared to
NIS strategy and it is more important than DDI with SMA method.
Indeed, all the DDI with WMA/Newton forecasts outperforms the
DDI results with SMA in terms of average inventory level and con-
sequently in inventory savings. Based on our simulations, we con-
clude this section by the following statement:

n
T = Zn,-:
i1

T=>0-B)(R

Cﬂ

n-1

+(1 =B (Ri -

NIS DDI

T <<< Tlgyp < nWMA/Newton

7. Conclusion

Improving the results of supply chains coordination is one of
the most important areas for academic researchers and manage-
ment practitioners. Optimization presents a mathematical branch
and an effective tool for collecting better management solutions.
In a decentralized supply chain, actors aim to reduce their total
costs by applying effective coordination approaches. One of the
most cost-effective coordination approaches, namely, DDI, can be
set up when actors agree to negotiate and cooperate. DDI allows
the upstream actor to infer the demand of his formal downstream
actors without the need for information sharing mechanisms. DDI
has proved its effectiveness by obtaining almost near-optimal so-
lutions. The literature has shown that the DDI approach cannot be
applied through MMSE or SES methods for the downstream actors
but only through the SMA method due to the uniqueness of the
processes’ propagation. Consequently, we found that it is natural
to study the feasibility of DDI using other forecasting methods.

This paper is a follow-up study to previous works with the
purpose of improving existing DDI results through the theoretical
analysis of inventory models based on some strong assumptions.
In a context of the DDI coordination strategy, instead of using the
SMA method, we proposed the adoption of the WMA method com-
bined with the well-known Newton optimization method. This pa-
per thus enriches the existing literature by exploring the feasi-
bility of the DDI approach when the WMA forecasting method is
adopted.

We first established the expressions of the manufacturer’s fore-
casting MSEPP! and /PP! and the resulting bullwhip effect. We pro-
posed two measures, namely BEE,‘C,VA%S"E/NQWIO" to assess the ampli-
fication of the bullwhip effect separating the adoption of the DDI
with the WMA method from the adoption of the NIS strategy with
the MMSE method, and BEE( 4*/N*""*"  to assess the amplification
of the bullwhip effect separating the adoption of the DDI strategy
with the WMA/Newton method from the adoption of the DDI with
the SMA method. Second, we mathematically formalized the MFOP
and proposed the application of Newton’s method for the resolu-
tion. Finally, the results for the MSEPP! and P2 optimization based
on the simulated causal invertible ARMA(p, q) demand processes
confirm the effectiveness of the WMA/Newton approach to propose
further enhanced supply chain solutions.

The implications of this paper are as follows. Supply chain
managers can introduce the WMA forecast method in the con-
text of the DDI strategy because of the uniqueness of the gen-
erated orders process for upstream actors. First, the paper pro-
vides WMA/Newton as a novel approach for coordination in de-
centralized supply chains. This approach does not require further
assumptions than those required by the DDI strategy with the
SMA method, except for the optimal weighting vector, which must
be shared between the supply chain actors. Second, based on the
conducted simulations, the paper confirms that the DDI strategy
with the WMA/Newton approach generally outperforms the NIS
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strategy and the DDI strategy with the SMA method in terms of
MSEPD! and [PP!, Therefore, the paper concludes that the DDI's per-
formance depends on the allocation vector, and especially MSEPD!
and P! generally improve with the optimal Newton’s allocation.
The “generally” statement is employed here since this work does
not provide an exhaustive sensitivity analysis of the performance
according to the demand process parameters. Indeed, it is not easy
to check the entire sensitivity of the DDI strategy according to the
combination of two sets of parameters ¢;;_; p and Oj{j=1

especially since they are not fixed in advance. Indeed, in this case,
the threshold can take the form of a summation, a product, or any
other linear or non-linear relationship, from which we can state
a general expression of a yield threshold. Establishing such rela-
tion requires a deep study on the sensitivity according to the pro-
cess parameters. Since the demand models are mathematically dis-
crete and no continuous, there is no way to get through the par-
tial derivative functions. We think it can be a case-by-case study
to bring an exhaustive benchmark and then be able to generalize
some threshold models.

Reversely, the bullwhip effect is affected. In comparison with
the NIS strategy, DDI with WMA/Newton method is valuable if
the parameter N is high enough vis-a-vis the lead-time L. As
shown in the simulation section, a break-point from which DDI
with WMA/Newton is more valuable than the NIS strategy can be
determined by varying the parameter N of the forecast method.
In the case of a DDI adoption where the downstream actor is
favourable to switch from an initial situation of an SMA method
to the WMA/Newton method, the bullwhip effect amplifies. This
was predictable because of the non-equitable weights that are as-
sociated with the N historical demand observations in the method.
However, the fact that the ponderation vector in the downstream
actor’s forecasts, is determined according to the minimization of
the average inventory level of the upstream actor, results into the
reduction of the mean inventory costs of the upstream actor over
the time. In this case, the bullwhip effect can be costly to the up-
stream actor of the supply chain if he doesn’t use a safety stock
as a buffer against orders variations. Indeed, excess inventory can
result in waste, while insufficient inventory can lead to poor cus-
tomer experience and lost business. Thus, the upstream actor is
emphasized to use a reserve inventory in such context of meth-
ods’ change. Third, the paper concludes that supply chain man-
agers, when the DDI with the WMA/Newton is adopted, can po-
tentially determine the optimal parameters (N, L) in terms of MSE
and average inventory levels improvements. The value of the WMA
parameter N can be easily manipulated through some simulations,
while managers do not truly have a large margin to vary the lead-
time L. Indeed, the lead-time is often related to supply chain trans-
portation.

From the point of a supplier or a manufacturer, the additional
merit of going the extra steps of WMA/Newton method is the ev-
ident forecast MSE and inventory levels reduction which will be
earned over time. The reduction of error is important because it is
directly correlated to the reduction of inventory levels. As shown
in equation 5, the average inventory level is a positive non-linear
function of the forecast MSE. The simulated experiments in Table
3 show that all empirical inventory means resulted from adopt-
ing WMA/Newton are lower than empirical inventory means re-
sulted from adopting SMA method. This difference may not seem
significant. However, the gap percentage separating the two com-
pared methods depends on the size of the enterprise and therefore
varies from a small, medium or multinational enterprise. In addi-
tion, batch sizing rules and product structure affect the costs of a
company’s inventory system. (Lea & Fredendall, 2002). As exam-
ple, let suppose a two-level supply chain adopting the NIS strategy
where the downstream actor, a retailer, adopts the MMSE method.

Moreover, let suppose that the retailer faces an ARMA(2,1) demand
pattern and the average inventory level at the upstream level, a
manufacturer, is equal to 1000 units. By adopting the DDI strategy
where the retailer uses the SMA method, the manufacturer earns
the reduction of nearly 40% of his average inventory level, let’s say
400 units, and then the average inventory level is equal to 600
instead of 1000 units. In the same way, by adopting the DDI strat-
egy where the retailer uses the WMA/Newton method, the man-
ufacturer earns an additional average saving of 8 units plus 400
units. Hence, our work provide supplementary inventory reduc-
tions based only on the forecasting method. The Newton method’s
implementation is not an exhausting task. The time and resources
needed for such a method depends on the capacity of qualified hu-
man resources to implementation. Moreover, the initial implemen-
tation cost is unique. We then estimate that the costs associated
with the sharing of the Newton weighting vector are negligible,
especially when we know that the unit holding costs of some in-
dustry products are relatively high. Indeed, if we suppose that a
manufacturer produces furniture that is stored in a warehouse and
then shipped to retailers, the manufacturer must either lease or
purchase warehouse space and pay for utilities, insurance, and se-
curity for the location. the company is responsible for paying the
salaries of the personnel responsible for moving the goods in and
out of the warehouse. In addition, the company is exposed to a cer-
tain risk of damage of the goods when moving to trucks or trains
for shipping. All these factors are taken into account in the cal-
culation of the unit inventory cost. Therefore, minimizing inven-
tory costs is an important supply-chain management strategy. The
inventory presents an asset account that requires significant cash
outlays. The importance of this account is then linked to the de-
cisions made by the managers, who must minimize it in order to
maintain a reasonable level of liquidity for other purposes. For ex-
ample, increasing the inventory balance by 20,000 dollars means
that less cash is available to operate the business each month. This
situation is considered an opportunity cost. If a company wants to
have more cash, it must sell its products as quickly as possible
to reap its profits and move its business forward. The faster the
money is raised, the more the company is able to develop its busi-
ness in the short term. A commonly used indicator is the inventory
turnover rate, which is calculated as the cost of goods sold divided
by the average inventory (Lee, Zhou & Hsu, 2015). For example, a
company that has 1 million dollars in cost of goods sold and an
inventory balance of 250,000 has a turnover ratio of 4. The goal is
to increase sales and reduce the required amount of inventory so
that the turnover ratio increases. By projecting our results of sim-
ulations on this indicator, the turnover ratio of the manufacturer
where the retailer uses the WMA/Newton method, is higher than
that where the retailer uses the SMA method, because the average
inventory level in the first case is lower than that in the second
case T‘E’V%A/Newmn < IDDL for the same fixed cost of goods sold. Con-
sequently, this capability of reducing the average inventory level
and increasing the turnover ratio is one of the most important cat-
alysts of an enterprise to enhance productivity and competition. As
it was argued in this paper, some typical contracts can be proposed
by the upstream actor to his formal downstream actor, in order to
collaborate with the aim of creating common and shared opportu-
nities of trust, transparency and future coordination.

The SMA method is preferable against the WMA method in
terms of bullwhip effect. However, The SMA method is not prefer-
able in terms of the distribution of the inferred demand when
compared against the WMA method, because the results of the
SMA method present one specific case of the results of the WMA
method. Indeed, if we replace x; by 1/N for i=1,...,N in all the
expressions where WMA is used, we exactly retrieve all the ex-
pressions where SMA is used for forecasts. It’s then concluded that
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there is no preference between SMA and WMA in terms of the dis-
tribution of the inferred demand.

We conclude our paper with natural lines for future studies.
First, the DDI strategy can still be evaluated using other forecast-
ing methods. Second, it would be interesting to adopt the min-
imization of the bullwhip effect as the objective function of the
WMA/Newton approach. Another direction is the consideration of
multiobjective optimization for parallel improvements of the sup-
ply chain performance metrics.

Supplementary materials

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.ejor.2020.04.044.

REFERENCES

Ali, M. M., Babai, M. Z., Boylan, ]. E., & Syntetos, A. A. (2017). Supply chain forecast-
ing when information is not shared. European Journal of Operational Research,
260(3), 984-994.

Ali, M. M., & Boylan, J. E. (2012). On the effect of non-optimal forecasting methods
on supply chain downstream demand. IMA Journal of Management Mathematics,
23(1), 81-98.

Ali, M. M., Boylan, J. E., & Syntetos, A. A. (2012). Forecast errors and inventory per-
formance under forecast information sharing. International Journal of Forecasting,
28(4), 830-841.

Alsultanny, Y. (2012,). Successful forecasting for knowledge discovery by statistical
methods. In 2012 Ninth International Conference on Information Technology-New
Generations (pp. 584-588). IEEE.

Boylan, J. E., & Johnston, F. R. (2003). Optimality and robustness of combinations of
moving averages. Journal of the Operational Research Society, 54(1), 109-115.
Cachon, G. P, & Fisher, M. (2000). Supply chain inventory management and the

value of shared information. Management science, 46(8), 1032-1048.

Chen, B., Chen, X., & Kanzow, C. (2000a). A penalized Fischer-Burmeister NCP-func-
tion. Mathematical Programming, 88(1), 211-216.

Chen, F, Drezner, Z., Ryan, ]. K, & Simchi-Levi, D. (2000b). Quantifying the bull-
whip effect in a simple supply chain: The impact of forecasting, lead times, and
information. Management science, 46(3), 436-443.

Chen, ]., & Bell, P. (2011). The impact of customer returns on decisions in a newsven-
dor problem with and without buyback policies. International Transactions in
Operational Research, 18(4), 473-491.

Dudek, G., & Stadtler, H. (2005). Negotiation-based collaborative planning be-
tween supply chains partners. European Journal of Operational Research, 163(3),
668-687.

Eckhaus, E. (2010). Consumer Demand Forecasting: Popular Techniques, Part 1:
Weighted and Unweighted Moving Average. Retrieved June, 24, 2010.

Fawcett, S. E., Osterhaus, P,, Magnan, G. M., Brau, ]. C., & McCarter, M. W. (2007).
Information sharing and supply chain performance: The role of connectivity and
willingness. Supply Chain Management: An International Journal, 12(5), 358-368.

Forslund, H., & Jonsson, P. (2007). The impact of forecast information quality on
supply chain performance. International Journal of Operations & Production Man-
agement, 27(1), 90-107.

Gaur, V., Giloni, A., & Seshadri, S. (2005). Information Sharing in a Supply Chain
under ARMA Demand. Management Science, 51(6), 961-969.

Gilbert, K. (2005). An ARIMA supply chain model. Management Science, 51(2),
305-310.

Gordon, G., & Tibshirani, R. (2012). Karush-kuhn-tucker conditions. Optimization,
10(725/36), 725.

Ha, AY., Tong, S., & Zhang, H. (2010). Sharing Imperfect Demand Information in
Competing Supply Chains with Production Diseconomies.

Hays, C. L. (2004). What wal-mart knows about customers’ habits: 14. The New York
Times.

Henderson, J. (2018). (June 25). Supply Chain Digital: Https://[www.
supplychaindigital.com/scm/nine-automakers-share-supply-chain-data

Jain, A., Seshadri, S., & Sohoni, M. (2011). Differential pricing for information sharing
under competition. Production and Operations Management, 20(2), 235-252.

Johnston, F. R, Boyland, ]. E., Meadows, M., & Shale, E. (1999). Some properties of a
simple moving average when applied to forecasting a time series. Journal of the
Operational Research Society, 50(12), 1267-1271.

Kalaoglu, O. i, Akyuz, E. S, Ecemis, S. Eryuruk, S. H., SUMEN, H, &
Kalaoglu, F. (2015). Retail demand forecasting in clothing industry. Tekstil ve
Konfeksiyon, 25(2), 172-178.

Kapgate, D. (2014). Weighted moving average forecast model based prediction ser-
vice broker algorithm for cloud computing. International Journal of Computer Sci-
ence and Mobile Computing, 3(2), 71-79.

Klein, R, Rai, A., & Straub, D. W. (2007). Competitive and cooperative positioning in
supply chain logistics relationships. Decision Sciences, 38(4), 611-646.

Lea, B. R, & Fredendall, L. D. (2002). The impact of management accounting, prod-
uct structure, product mix algorithm, and planning horizon on manufacturing
performance. International Journal of Production Economics, 79(3), 279-299.

Lee, H. H., Zhou, J., & Hsu, P. H. (2015). The role of innovation in inventory turnover
performance. Decision Support Systems, 76, 35-44.

Lee, H. L, So, K. C,, & Tang, C. S. (2000). The value of information sharing in a
two-level supply chain. Management science, 46(5), 626-643.

Lee, H. L, & Whang, S. (2000). Information sharing in a supply chain. International
Journal of Manufacturing Technology and Management, 1(1), 79-93.

Mendelson, H. (2000). Organizational architecture and success in the information
technology industry. Management science, 46(4), 513-529.

Miiller, R., & Turner, J. R. (2005). The impact of principal-agent relationship and
contract type on communication between project owner and manager. Interna-
tional Journal of Project Management, 23(5), 398-403.

Qi, L, & Sun, D. (1999). A survey of some nonsmooth equations and smooth-
ing Newton methods. Progress in optimization (pp. 121-146). Boston, MA:
Springer.

Raghunathan, S. (2001). Information sharing in a supply chain: A note on its value
when demand is nonstationary. Management science, 47(4), 605-610.

Raghunathan, S. (2003). Impact of demand correlation on the value of and incen-
tives for information sharing in a supply chain. European Journal of Operational
Research, 146(3), 634-649.

Sahin, E, & Robinson, E. P. (2005). Information sharing and coordination in make-
to-order supply chains. Journal of operations management, 23(6), 579-598.

Sanders, N. R.,, & Manrodt, K. B. (1994). Forecasting practices in US corporations:
Survey results. Interfaces, 24(2), 92-100.

Sanders, N. R.,, & Manrodt, K. B. (2003). Forecasting software in practice: Use, satis-
faction, and performance. Interfaces, 33(5), 90-93.

Shumway, R. H., & Stoffer, D. S. (2011). ARIMA models. Time series analysis and its
applications (pp. 83-171). New York: Springer.

Sorensen, D. C. (1985). Analysis of pairwise pivoting in Gaussian elimination. I[EEE
Transactions on Computers, (3), 274-278.

Taghipour, A., & Frayret, J. M. (2013). Dynamic mutual adjustment search for sup-
ply chain operations planning co-ordination. International Journal of Production
Research, 51(9), 2715-2739.

Tliche, Y., Taghipour, A., & Canel-Depitre, B. (2019). Downstream Demand Inference
in decentralized supply chains. European Journal of Operational Research, 274(1),
65-77.

Vandenberghe, L., & Boyd, S. (1996). Semidefinite programming. SIAM review, 38(1),
49-95.

Vosooghidizaji, M., Taghipour, A., & Canel-Depitre, B. (2019). Supply chain coordina-
tion under information asymmetry: A review. International Journal of Production
Research, 1-30.

Wang, J. W,, & Cheng, C. H. (2007). Information fusion technique for weighted time
series model, 2007 International conference on machine learning and cybernetics
(4, pp. 1860-1865). IEEE.

Wenxia, X., Feijia, L., Shuo, L., Kun, G., & Guodong, L. (2015). Design and application
for the method of dynamic weighted moving average forecasting. In 2015 Sixth
International Conference on Intelligent Systems Design and Engineering Applications
(ISDEA) (pp. 278-280). IEEE.

Yu, Z., Yan, H., & Cheng, T. C. E. (2002). Modelling the benefits of information shar-
ing-based partnerships in a two-level supply chain. Journal of the Operational
Research Society, 53(4), 436-446.

Yu, Z., Yan, H., & Edwin Cheng, T. C. (2001). Benefits of information sharing
with supply chain partnerships. Industrial management & Data systems, 101(3),
114-121.

Zhang, X. (2004). Evolution of ARMA demand in supply chains. Manufacturing &
Service Operations Management, 6(2), 195-198.


https://doi.org/10.1016/j.ejor.2020.04.044
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0001
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0001
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0001
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0001
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0001
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0001
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0002
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0002
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0002
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0002
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0005
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0005
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0005
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0005
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0006
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0006
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0006
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0006
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0007
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0007
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0007
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0007
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0007
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0008
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0008
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0008
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0008
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0008
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0008
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0009
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0009
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0009
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0009
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0010
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0010
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0010
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0010
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0011
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0011
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0012
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0012
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0012
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0012
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0012
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0012
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0012
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0014
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0014
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0014
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0014
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0014
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0015
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0015
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0016
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0016
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0016
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0016
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0017
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0017
https://www.supplychaindigital.com/scm/nine-automakers-share-supply-chain-data
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0018
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0018
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0018
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0018
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0018
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0019
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0019
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0019
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0019
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0019
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0019
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0020
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0020
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0020
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0020
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0020
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0020
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0020
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0020
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0021
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0021
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0022
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0022
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0022
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0022
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0022
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0025
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0025
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0025
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0025
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0025
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0026
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0026
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0026
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0026
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0027
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0027
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0028
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0028
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0028
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0028
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0029
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0029
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0029
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0029
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0030
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0030
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0031
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0031
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0032
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0032
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0032
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0032
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0033
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0033
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0033
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0033
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0034
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0034
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0034
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0034
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0035
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0035
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0035
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0035
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0037
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0037
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0038
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0038
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0038
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0038
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0039
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0039
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0039
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0039
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0039
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0040
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0040
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0040
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0040
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0041
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0041
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0041
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0041
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0041
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0042
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0042
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0042
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0042
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0043
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0043
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0043
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0043
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0043
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0043
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0043
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0044
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0044
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0044
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0044
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0044
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0045
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0045
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0045
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0045
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0045
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0046
http://refhub.elsevier.com/S0377-2217(20)30397-0/sbref0046

	An improved forecasting approach to reduce inventory levels in decentralized supply chains
	1 Introduction
	2 Literature review
	3 Modeling approach
	3.1 Customer’s demand model and forecast method
	3.2 Downstream actor’s orders time-series structure
	3.3 Derivation of the manufacturer’s mean squared error and average inventory level expressions
	3.4 Bullwhip effect
	3.5 Newton method for optimal weighting

	4 Simulation results and discussion
	4.1 Implementation of newton’s method
	4.2 Simulation experiments
	4.3 Comparative studies
	4.3.1 Comparison between the ddi strategy with WMA/Newton method and the nis with mmse method with respect to lead time and moving average parameters
	4.3.2 Comparison between the ddi strategy with WMA/Newton method and the ddi strategy with sma method with respect to lead time and moving average parameters
	4.3.3 Evolution of the bullwhip effect


	5 Discussion
	6 Generalization for multi-level supply chains
	7 Conclusion
	Supplementary materials
	REFERENCES


