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For many years, the main objective of studying decentralized supply chains was to demonstrate that a
better inter-firm collaboration could lead to a better overall performance of the system. The literature has
demonstrated that collaborating by sharing information, even in a partial way, can lead to near-optimal
solutions. In this context, many researchers have studied a phenomenon called Downstream Demand
Inference (DDI), which presents an effective demand management strategy to deal with forecast prob-
lems. DDI allows the upstream actor to infer the demand received by the downstream actor without the
need of information sharing. Recent research showed that DDI is possible with Simple Moving Average
(SMA) forecast method, and was verified for an autoregressive [AR(1)] demand process, a moving aver-
age [MA(1)] demand process, and an autoregressive moving average [ARMA(1, 1)] demand process. In this
paper, we extend the strategy’s results by considering causal invertible [ARMA(p, q)] demand processes.
We develop Mean Squared Error and Average Inventory level expressions for [ARMA(p, q)] demand under
DDI strategy, No Information Sharing (NIS) and Forecast Information Sharing (FIS) strategies. We compute
the Bullwhip effect generated by employing SMA method and we simulate the resulted improvement
compared to employing MMSE method. We analyze the sensibility of the three performance metrics in
respect with lead-time value, SMA and ARMA(p, q) parameters. We compare DDI results with NIS and FIS
strategies’ results and we show experimentally that DDI generally outperforms NIS. Finally, we provide
a revenue sharing contract as a practical recommendation to incite supply chain managers to adopt DDI

strategy.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

A supply chain is two or more than two agents who inte-
grate with each other, in order to create and deliver value to fi-
nal customers. A decentralized supply chain is characterizing by
independent agents with asymmetric information. In fact, in this
form of supply chain, most of supply chain agents may not share
information due to confidentiality policies, quality of information
or different system’s incompatibilities. Every actor holds its own
set of information and try to maximize his objective (minimiz-
ing costs/minimizing inventory holdings) based on the available
settings. Therefore, the agents control their own activities with
the objective of improving their own competitiveness, which leads
them to make decisions that maximize their local performance by
ignoring the other agents or even the final consumer. These deci-
sions are called myopic because they do not take into account the
performance of all the partners to satisfy this consumer.
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Over the last fifteen years, a major movement of business part-
ner’s integration to implement advanced and collaborative replen-
ishment processes has emerged. Supply Chain Management (SCM)
has thus emerged in the service and production sectors in order
to identify and take advantage of new sources of improvement in
the competitiveness of companies. SCM therefore proposes strate-
gies and methods to reduce part costs whose origin is mainly due
to poor coordination of operations. The observation of collabora-
tion method implementation is very encouraging. Companies are
able to better satisfy the consumer, by providing more availability
of products, services and less delay, while being more efficient by
having less stock, using the resources in a better way and procur-
ing better return on used capital.

One of the common collaborative approach can be resumed
by sharing information which described as a crucial key for
overall supply chain performance (Asgari, Nikbakhsh, Hill, &
Farahani, 2016; Ciancimino, Cannella, Bruccoleri, & Framinan,
2012). Indeed, in most industry sectors, final customer demand
volatility need to be well considered by all supply chain actors,
as demand is the first engine of benefits of whole supply chain.
Forecasting customer demand can be the key for safe inventory
levels and reducing inventory costs. Disney and Towill (2002) and
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Ireland and Crum (2006) have reported that inventory levels can
be reduced to 50% and inventory costs reduced to 40% which
leads to a competitive success. In recent years, numerous studies
have emphasized the importance of information sharing within
the supply chain (Barratt, 2004; Lambert & Cooper, 2000; Lau and
Lee, 2000; Trkman, Groznik, & Koohang, 2006).

The question of our paper is motivated by the recently pub-
lished work of Ali, Babai, Boylan, and Syntetos (2017), who stud-
ied three different strategies to examine the information sharing
value in a two-level supply chain, under the hypothesis of an AR(1)
demand process. The first strategy, called No Information Shar-
ing (NIS), is a decentralized demand management strategy where
the demand information is not shared, and the upstream actor
would simply base its forecasting on the orders received from the
downstream actor. The second strategy, called Forecast Information
Sharing (FIS), presents a centralized demand management strategy
where the upstream actor has access to the demand at the down-
stream actor, and thus bases its forecast on the shared informa-
tion. Between the NIS strategy, which presents sub-optimal solu-
tions and FIS strategy, which presents optimal solutions, a third
approach, called Downstream Demand Inference (DDI) strategy, al-
lows to enhance the performance of the decentralized system to
have near-optimal solutions. Instead of sharing demand informa-
tion, the two supply chain actors infer the demand and the de-
duced customer’s demand is using in the forecast. Ali and Boy-
lan (2012) showed that DDI could not be applied with optimal
forecasting methods, but only with Simple Moving Average (SMA)
method, which is widely used in the literature.

The reports of DDI's results were consistent. First, FIS is in most
of the cases the best strategy as actors behave optimally by sharing
information and there is no need of inference. Second, DDI strat-
egy improves on NIS by reducing Mean Squared Error (MSE) for
higher values of autoregressive parameter (beyond a certain break-
point), and reducing inventory costs for higher values of lead-time
and SMA’s order. The improvements on MSE and inventory costs
were not proportional which confirmed the finding of Boylan and
Syntetos (2006) who mention that accuracy implication (Inven-
tory costs) is the end measure that must be taken into account,
rather than accuracy itself (MSE). Information sharing values were
evaluated especially when the demand followed an AR(1), MA(1)
or ARMA(1.1) processes. In this paper, we extend the results of
the authors to situations where the demand follows an invertible
causal ARMA(p, q) process. We show through simulation, that DDI
always outperforms NIS in terms of Average Inventory level (),
and for the most of cases in terms of MSE.

The rest of the paper is organizing as follows. Section 2 is de-
voted to the literature review. In Section 3, we derive the MSE and
I; expressions, for an invertible causal ARMA(p, q) demand process,
under NIS, DDI and FIS strategies. We also present Bullwhip effect
expressions with SMA and MMSE method and we propose an indi-
cator of the performance separating the two methods. We simulate
different ARMA(p, q) processes, generalize MSE and I; behaviors for
variable parameters under the considered strategies, and study the
Bullwhip effect improvement in Section 4. In Section 5, we pro-
pose a revenue sharing contract as an incentive to adopt DDI strat-
egy by supply chain managers. Finally, in Section 6, we present the
conclusions and implications of the paper, as well as the natural
avenues for future research.

2. Literature review

Information sharing among supply chain links can help achieve
important benefits such as increased productivity, improved policy
making and integrated services. Various papers (Chen, Drezner,
Ryan, & Simchi-Levi, 2000; Lee et al., 2000) have shown that shar-
ing demand information reduces the so-called “Bullwhip Effect”.

The Bullwhip effect is essentially the phenomenon of demand
variability amplification along a supply chain, from the retailers,
distributors, producer, and the producers’ suppliers, and so on.
Lee, So, and Tang (2000) characterize this phenomenon as demand
distortion, which can create problems for suppliers, such as grossly
inaccurate demand forecasts, low capacity utilization, excessive
inventory, and poor customer service. Letting the upstream links
have access to point-of-sales data, the harmful effect of demand
distortion is improving. The most celebrated implementation of
demand information sharing is Wal-Mart’s Retail Link program,
which provides on-line summary of point-of-sales data to sup-
pliers such as Johnson and Johnson, and Lever Brothers (Gill &
Abend, 1997). Indeed, demand information sharing between a
downstream actor and his formal supplier can be viewed as the
cornerstone of initiatives, such as Quick Response (QR) and Effi-
cient Consumer Response (ECR). Often times, information sharing
is embedded in programs like Vendor Managed Inventory (VMI)
or Continuous Replenishment Programs (CRP). Major successes of
such programs have been reported at companies like Campbell
Soup (Clark, 1994) and Barilla SpA (Hammond, 1993).

Although it was accepted by academic researchers and indus-
trial decision makers, that information sharing and managerial co-
ordination generally lead to improved supply chain performance
(La Londe, Ginter, & Stock, 2004), the potential weight of improve-
ment and performance allocation through supply chain actors stay
fuzzy. Cachon and Fisher (2000) report that information sharing
benefits through different researches is varying between 0% and
35% of total costs. The large deviation of reported results appears,
in some way, correlated to supply chains sectors, problems state-
ments and models assumptions.

Sahin and Robinson (2005) analyses and identifies whether in-
formation sharing or coordination are the source of supply chain
improvement, analyses benefits allocation across supply chain ac-
tors and study the relationship between environmental factors and
cost decline. The authors reported a reduction of 47.58% in cost
when adopting a centralized strategy.

Based on a two-level decentralized supply chain, Yu, Yan, and
Edwin Cheng (2001) illustrate the benefits of information sharing.
From the comparison of cost savings and inventory reductions, the
authors concluded that Pareto improvement is achieved with re-
spect to the whole supply chain performance, but at the same
time, the benefits of the producer are more valuable than the ones
of the retailer. Hence, they recommend that partnership initiative
must be taken by the producer and give some collaboration incen-
tives such as sharing logistic costs or guarantying supply reliability.

Despite all the potential advantages and benefits procured by
information sharing, the lack of availability of information systems
is one of the most common barriers to information sharing (Ali
et al., 2017). SCM World (Courtin, 2013) report that many com-
panies are hampered by the high investment costs and system
implementation issues associated with formal information shar-
ing. Negotiation is the common issue to reduce supply chain par-
ties’ costs, as monetary losses remain the main reason for invest-
ment blockage (Klein, Rai, & Straub, 2007). Information systems
costs are composed of the initial purchase costs and the time-
implementation costs (Fawcett, Osterhaus, Magnan, Brau, & Mc-
Carter, 2007). Despite developers are constantly trying to find com-
patibility solutions, companies tend to resist change because of
intra-organizational problems. Even when companies succeed in
implementing information systems, the problem becomes a lack
of trust and a lack of dialogue and sharing (Mendelson, 2000).
Indeed, each partner is wary of the possibility of other partners
abusing information and reaping all the benefits from information
sharing (Lee & Whang, 2000). Hence, trust presents an important
factor so that decision makers only share information with their
trusted parties.
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Besides these information-sharing inhibitors, even when infor-
mation technology and trust exist between partners, another type
of brakes can persist. It is firstly about information precision when
decision makers do not trust shared information in terms of qual-
ity and estimate that error is relatively high (Forslund & Jons-
son, 2007). Information leakage effect can also be a reason to
frame information sharing. Managers always fear the fact that the
shared information can be obtained or deduced by competitors
who will react to the information sharing activity. As example,
Ward (wardsauto.com) conducted a survey of 447 car suppliers in
which 28% of survey respondents said their intellectual property
was revealed by at least one Detroit car producer and 16% said
their intellectual property was revealed by car producers (Anand &
Goyal, 2009). As result, the reaction of the competitors may change
the benefits among the parties involved in information sharing (Li,
2002). Wal-Mart announced that it would no longer share its infor-
mation with other companies like Inc. and AC Nielson as Wal-Mart
considers data to be a top priority and fears information leakage
(Hays, 2004). Hence, many companies are conducting to control
their information flows, which can lead to additional operational
costs (Anand & Goyal, 2009).

In the midst of all these discussions, Downstream Demand In-
ference appears as topical subject in the scientific community. It
is referring to a situation where the upstream actor of a supply
chain, can infer the demand occurring at the downstream actor,
without need of formal information sharing. A stream of papers,
such as Raghunathan (2001) and Zhang (2004), demonstrate that
received orders contain already demand information. Hence, they
show that demand information can be mathematically concluded
from the order history of the downstream actor.

Researchers on this stream of papers are based on two assump-
tions: The first one is the fact that orders received from the re-
tailer already contain the customer’s demand information. The sec-
ond one is that the demand process and its parameters are known
throughout all the supply chain. Hence, if this is always true, FIS
is invaluable. In the paper of Ali and Boylan (2011), the authors
present feasibility principles and show that inferring customer de-
mand in a precise manner by an upstream member is impossible
if model’s hypotheses are strictly realistic. Thus, they conclude that
FIS has value in supply chains. The authors showed also that DDI
could not be applied with optimal forecasting methods but only
with Simple Moving Average (SMA) method, which is widely used
in the literature. This forecast method is based on the N most
recent observations and in every future period, the oldest obser-
vation is dropped out and exchanged by the last observation. As
Ali and Boylan (2012) showed that, if a downstream actor accepts
to use SMA method for his forecasts, the upstream actor will be
able to infer the actual downstream customer demand, Ali et al.
(2017) applied DDI on real sales data and discussed the practi-
cal implications. The authors showed that DDI outperforms NIS in
terms of forecast MSE and inventory costs under the assumption
of an AR(1) demand model and for high values of autoregressive
coefficient. They also studied the sensibility of DDI with regard to
SMA’s order N and lead-time L and found that DDI is valuable for
high values of N and relatively low values of L. As future works, it
was proposed to extend research on DDI strategy by considering a
more generalized ARMA (p, q) demand model.

Thus, we present in Table 1 recent and relevant works, which
are related to our research field, ordered by date of publication
over the last two decades.

Considering more realistic assumptions into demand models re-
mains one of the most important directions in inventory theory
(Graves, 1999). Many researchers have investigated the dependence
of the value of sharing information on the time-series structure
of the demand process using an Autoregressive Moving Average
(ARMA) methodology. It has been argued that demands over con-

secutive time periods are rarely statistically independent (Graves,
1999; Kahn, 1987; Lee et al.,, 2000). Therefore, it would be ap-
propriate to model the demand (tourism, fuel, food products, ma-
chines, etc.) process as auto-correlated time series as they are long
lifecycle goods. Based on these recommendations, we move on to
next section in order to assess DDI performance under a more re-
alistic and generalized ARMA(p, q) demand model, in comparison
with NIS and FIS strategies.

3. Framework model assumptions

We base our modeling framework on the works of Lee et al.
(2000) and Ali et al. (2017). We consider a simple two-level supply
chain formed by a producer and a retailer. We thus consider the
same model’s assumptions, except the time-series demand struc-
ture. As in above mentioned works, it is assumed that replenish-
ment policy follows a periodic review system, where downstream
actors place their orders at upstream actors after examining their
respective inventory levels. Indeed, at time period t, demand Dy is
realized at the retailer who observes his inventory level and then
places and order Y; before the end of the period. The producer pre-
pared the required quantity order Y;, and ships it to the retailer,
who will receive it at period t + L + 1. Here, L presents the replen-
ishment time of both production and shipment. On one hand, it
is assumed that there is no order cost. On the other hand, unit
inventory holding cost and shortage cost are fixed and denoted re-
spectively by h and s. It is also assumed that both producer and
retailer adopt Order-Up-To policy, which minimizes the total costs
over infinite time horizon (Lee et al., 2000).

We assume that demand arriving at the retailer is an invertible
causal ARMA(p, q) process (see properties 1 and 2 stated below).
Let D; be the ARMA(p, q) demand process at the retailer, such as:

P q

Di=c+) ¢Dj+&+) 0i&; (1)
j=1 Jj=1

Where ¢ > 0 determines the unconditional mean of the process

D¢, ¢j € [-1,1] are Autoregressive coefficients (j=1,.....,p), 0 €

[-1,1] are Moving Average coefficients (j=1,.....,q) and & ~

N(O, 052) are independent and identically distributed Vt € [0, +oo[].
Please note that for consideration of all ARMA(p, q) models, we do
not exclude cases where ¢ =0 or p=0. In the case where q =
0, we consider causal AR(p) demand processes, and in the case
where p = 0, we consider invertible MA(q) demand processes.

3.1. Mean squared error generalization and demand amplification
under ARMA(p, q) demand model

First, we focus on establishing the MSE expressions under DDI,
FIS and NIS strategies whose proofs are stated in Appendix A.
We note here that, on one hand, we used causality and invert-
ibility ARMA(p, q)’s properties, W-weigths of Infinite Moving Av-
erage Representation (IMAR) of ARMA(p, q) models (see Shumway
& Stoffer, 2011). On the other hand, we follow standard time-
series methods by defining d; as the mean-centered demand pro-
cess. MSE under DDI, FIS and NIS are, respectively, expressed by
Egs. (2)-(4).

L
MSEDDI = (L+ 1))’0 —‘,—22_" y[_+]7j + (LJ,- 1)2
Jj=1
2N—1' 2(L+1 L+1N-1
%"'WZ] Vn-j _(T)ZZYH" (2)
Jj=1 Jj=1 k=0

MSEPD!I in Eq. (2) is a function of lead-time L, SMA fore-
cast’s order N and auto-covariance function y; at time periods j =
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Recent works contributing on information sharing value.

Work

Typology of demand  Forecasting method

Adopted inventory
policy

Contributions

Limitations

Ali et al. (2017)  AR(1) Simple Moving Average Order up to
inventory policy

Ali and Boylan ~ ARMA(p, q) Simple Moving Average and Order up to
(2012) Single Exponential inventory policy

Smoothing

Ali et al. (2012) AR(1), MA(1) and Minimum mean squared Order up to
ARMA(1,1) error inventory policy

Ali and Boylan ~ ARMA(p, q) Minimum mean squared Order up to
(2011) error inventory policy

Hosoda, Naim,  AR(1) Minimum mean squared Order up to
Disney, and error inventory policy
Potter (2008)

Hosoda and AR(1) Minimum mean squared Order up to
Disney error inventory policy
(2006)

Cheng and Wu  AR(1) ARIMA methodology Order up to
(2005) inventory policy

Gaur, Giloni, ARMA(p, q) ARIMA methodology and Myopic order up to
and Seshadri Simple Moving Average inventory policy
(2005)

Gilbert (2005)  ARIMA(p.d, q) Minimum mean squared Order up to

error inventory policy
Zhang (2004) ARMA(p. q) Minimum mean squared Order up to
error inventory policy

Alwan, Liu, and AR(1) Simple Moving Average, Order up to

Yao (2003) Single Exponential inventory policy
Smoothing and minimum
mean squared error

Raghunathan AR(1) ARIMA methodology Order up to
(2003) inventory policy

Raghunathan AR(1) Minimum mean squared Order up to
(2001) error inventory policy

Chen et al. AR(1) Simple Moving Average Order up to
(2000) inventory policy

Lee et al. AR(1) ARIMA methodology Order up to
(2000) inventory policy

Graves (1999)

ARIMA(0,1,1)

Exponential-weighted
moving average

Adaptive base-stock
control policy

DDI provides MSE reductions and cost
savings on real sales data

DDI is not possible with optimal
forecasting methods or Single
Exponential Smoothing but only with
Simple Moving Average method

Analytical relationships between
forecast accuracy and inventory
holdings

DDI is valuable if demand process and
parameters are known for the
producer

Information sharing is benefic in terms
of standard deviation of predicted
errors

The retailer’s order history at the
producer already contains
information about the demand at the
retail

FIS is valuable for two-level
multi-retailer supply chain

The value of sharing demand
information depends on the time
series structure of the demand
process

Different Bullwhip assumptions lead to
different insights

The retailer’s order history at the
producer already contains
information about the demand at the
retail

Improved forecasting cannot eliminate
the Bullwhip effect

FIS is valuable for two-level
multi-retailer supply chain

DDI is possible for AR(1) demand
model

Bullwhip effect is commonly caused by
demand forecasting and order lead
times

Demand information sharing provides
savings in inventory costs

The retailer’s order history at the
producer already contains
information about the demand at the
retail

Restriction of the analysis to
only one demand process

Not incorporating MSE or
inventory metrics expressions
for ARMA demand processes

Restriction of the analysis to
only three demand processes

Not incorporating MSE or
inventory metrics expressions
for ARMA demand processes

Restriction of the analysis to
only three demand processes

Restriction of the analysis to
only one demand process

Restriction of the analysis to
only one demand process

Not investigating Bullwhip
effect for ARMA demand
processes

Restriction of the analysis to
NIS strategy

Not incorporating MSE or
inventory metrics expressions
for ARMA demand processes

Restriction of the analysis to
only one demand process

Restriction of the analysis to
only one demand process
Restriction of the analysis to
only one demand process
Restriction of the analysis to
only one demand process

Restriction of the analysis to
only one demand process
Restriction of the analysis to
only one demand process

0,...... sL+N. As y; is a decreasing function on j, and by look-

This finding is confirmed in Section 4.

ing at the four components of (2), it becomes clear that the third
component overweight the fourth one, with respect to N. Indeed,
as the third component is inversely proportional to N and N2, we
conclude that MSEPD! reduces as the SMA order N increases. In the
same way, the third component, which is proportional to LZ, in ad-
dition to the first component, overweight the fourth one with re-
spect to lead-time L. Furthermore, by looking at third and fourth
component, it is expected that MSEPP! will be more sensitive to N,
for higher values of L. Reciprocally, MSEPP! is expected to be less
sensitive to L, for higher values of N.

L i 2
MSE™S o7 | 3

i=0 \j=

v 3)
0

MSEFS in Eq. (3) is a function of lead-time L, IMAR coeffi-
cients ¥, j=0,...... ,L and is a linear function on 052. We can

so expect that MSEFS improves as L increases, especially in a log-
arithmic manner when we know that v is a decreasing function.

2 L/ 2
§ (4)

- |3

i=0 \ j=0

> (29

i=0 \j=0

MSENS = ¢

e

MSENS in Eq. (4) is a function of lead-time L, IMAR coeffi-
cients ¥, j=0,...... ,L and is a linear function on 0%:2. The ex-

pression on § at the right side of (4) is only provided to show the
relation with the variance of demand error. We make the same
reasoning as before, and expect that MSENS improves as L in-
creases, especially in a logarithmic manner when we know that 1}
is a decreasing function. This finding is also confirmed in Section 4.

Second, we focus on studying the orders amplification (Bull-
whip effect), for an ARMA(p, q) demand process at the retailer.
This metric is computable accordingly to the forecasting method
adopted by the retailer and the resulting orders process placed at
the producer. In this part, as the employed method affects the na-

ture of orders process, we denote xﬁj and ¥ ; the IMAR coefficients
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of orders process, respectively, in the cases where MMSE and SMA
methods are adopted by the retailer.

On one hand, when the MMSE forecasting method is adopted
by the retailer, the AIAO property (Zhang, 2004) provides a conve-
nient means for quantifying the Bullwhip effect. As the ARMA(p, q)
process at the retailer transforms into an ARMA(p, Max(p,q—L))
process at the producer, and considering the IMAR coefficients of
demand and orders processes, respectively, 1; and 1/7j. the ratio
of the unconditional variance of the orders process to that of de-
mand process, namely the Bullwhip effect is measured by the be-

low equation.
_varty (v N (S50
" Var(Dy) (]X(; 'ﬁ)) ( j=0 'pj

Yiov?
= (5)
< 1—0'/0)

On the second hand, when the SMA forecasting method is
adopted by the retailer, the ARMA(p,q) process at the retailer
transforms into an ARMA(p, q + N) process at the producer where
E;T[ = (ﬁ +1)&; is the error term of orders process (Ali & Boylan,
2012). We show in the proof below, that the ARMA(p, q + N) pro-
cess at the producer can be rewritten in a second manner, as
an ARMA(p, q) process where &, = (& +1)& — L& _y is the error
term of orders process. Considering the lead-time L, the parame-
ter N and the IMAR coefficients of demand and orders processes,
respectively, ¥; and ¥ j» the Bullwhip effect is measured by the
below equation.

BWef fectMSE

~2
Var(Y;,) 212 +N2+2NL [ X% ¥;

BWef fectMA = = —
Var(Dy) N2 YoV

(6)

Proof:
Let Y; be the orders process arriving at the producer. Under
SMA method, Y; is expressed by (see Ali & Boylan, 2012):

p 9 L a
Ye=c+ Z¢th—j + Zejgt—j - (m) Zej";:t—N—j
= =0 =0

With

£ = ( #1)&

where & is the error term of demand process at period t.
Let

§j=6_j— L+N$rNJV]—1 .q
Y; can be written in a second manner as follows:
p -
Y =c+ Z(,bjyt_j + ZQIEF]-
j=1 j=0
where é:t = ét - ﬁét—N = (% t1)§r -
orders process at period t and ’;‘Nt ~ N(O,

Hence, we show that the ARMA(p,q) process at the retailer
transforms into an ARMA(p, q) process at the producer with dif-

ferent error terms. Let ;j be the IMAR coefficients of the orders
process Y.

L& y is the error term of
2[24N242NL 2
N2 O—s )

As og Var(f ) =Var((§ + D& — L&) = wog we
finally obtain:
BWef fectSMA = Var(Y;) Var( & i ) (Z w )
Var(D;) Var( % Vikij) (Z SV; )

~2
2024+ N2 +2NL [ Y15V
N2 Z ,(//]2

< BWef fectSMA =

Considering the obtained expressions of Bullwhip effect with
MMSE and SMA methods, we can simply consider the ratio of
BWef fectSMA to BWef fectMMSE which may be a convenient indi-
cator of Bullwhip effect improvement between the two methods.
We denote this indicator by BWP which is expressed by the below
equation.

~2
swp _ BWeffect™" 217 + N” 1 2NL YoV .
= BWef fectMMSE = 2 o0 72 (7)
(NB) ito¥;

BWP is a linear function of the ratio of the squared IMAR co-
efficients resulted from the orders process when SMA method is
employed, to the squared IMAR coefficients resulted from the or-
ders process when MMSE method is employed.

We go on to establish the producer Average Inventory levels I
expressions under DDI, NIS and FIS.

3.2. Average Inventory level generalization under ARMA(p, q)
demand model

In this section, we establish Average Inventory levels I; expres-
sions associated with DDI, FIS and NIS strategies. The Average In-
ventory level under Order-Up-To policy is given by the below equa-
tion (see Ali, Boylan, & Syntetos, 2012):

L+1
-E ZY[+i +
i=1

Where T; is the producer optimal Order-Up-To inventory level. In
this case, T; is given by the below equation (see Lee et al., 2000):

(8)

EYt)
2

T, =M, +K0§~\FV 9)

And where M; and V are respectively, the conditional expec-
tation and conditional variance of the total demand over the
lead-time, and K = N(O 1)(s+h) for the standard normal distribu-

tion Fyg 1y- Eq. (8) allows us to write:

L+1
E(Y;
oI — oDl _ E(> Vi) + (Zt) (8a)
i1
L+1
E(Y;
=1 - (ZYM) o (8b)
L+1
E(Y;
S — TNIS _ <ZYI+I> (t) (8¢)

First, we express the terms in common, E(Y;) and E(ZL+1 Yeii)-
On one hand, we have:

1
c p
EY)=puy = bo—57 & Z?:] i o <1 - ;@)

On the other hand, we have:

L+1 L+1
E (Z Yt+i> =@L+Duy+ E(ZY[H)
i=1

i=1
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L+1 L+1 400 .
& E(ZYM) =(L+Duy + E(ZZ Kﬁjémj) =(L+Dny
i1

i=1 j=0

-1
L+1 14
& E(ZYH,-) =c({L+1) (1 - quj)
j=1

i=1

We notice here that expected orders at time period t and
expected orders over time period equal to lead-time plus one
time period, are stationary over time and simply functions of
constants ¢, lead-time L and autoregressive coefficients ¢;, j =
0,...... , p. Hence, we move on to develop the Average Inventory
level J; under the three different strategies.

3.2.1. Derivation of the Average Inventory level under DDI strategy
Under DDI strategy, the producer optimal Order-Up-To inven-
tory level TPP! is expressed by the below equation.

PP — M Ko /DD (9a)

Where

L+1
M2 = E (Z ft+i) =E[(L+1)ft1]
i=1

1 N1
& M = E((L +1) (Md TN Z dtk))
k=0

1 N-1
& M = (L+ Dpg + E(Zd[ k>

k=0

& M = (L+ g

-1

p
oM =c(L+1) (1 - Z¢j>
j=1

And
VDDI — MSEDDI

So, by substituting M;""" and VPP! expressions in (9a) and then

by substituting (9a) expression in (8a), finally obtain JPP! expressed
by the below equation.

L
e Koy L+ Dye+2Y iy
2(1_ ;’:1 ¢f) $ i=1
N-1 L+1 N-1 %
. 2(L+1
+ (L+1)2 (N+N2 J- ) ( )ZZ 1+ki|
j=1 i=

1 k=0

(10a)

I?D’ in (10a) is a function of constants ¢ and K, autoregressive
coefficients ¢, standard error of orders process oz, lead-time L,
SMA forecast’s order N and auto-covariance function y; at time pe-
riods j=0,......, L+ N. As the component in brackets in (10a) is
the MSEPP!, we expect that /PP! behave approximatively in the
same way as MSEPP!. It implies that [P”' reduces as the SMA or-
der N increases and improves when the lead-time L increases. The
same sensitivity analysis as the one done for MSEPP! is expected.
We move on to develop the approximate expressions for the pro-
ducer’s average inventory, under FIS strategy.

3.2.2. Derivation of the Average Inventory level under FIS strategy
Under FIS strategy, the producer optimal Order-Up-To inventory
level TS is expressed by the below equation.

TS = M, + Kagy/VFIs (9b)

Where

-1
L+1
M,FIS — (ZDf+'/Tf> ~c(L+1) (l - Zq&,)

i=1 j=1

+ Z ( Z ’a”j)ft—i

i=0 \ j=1+i
And

VFIS MSEFIS

So, by substituting M;"™ and V'S expressions in (9b) and then

by substituting (9b) expression in (8b), finally we obtain [F'S ex-
pressed by the below equation.

s — 2(1 7_ ) +y ( ftlﬁj)&—i

i= Jj=1+i

(10b)

+ Kooy Z(Z%)Z 7

i=0

IT’S in (10b) is a function of constants ¢ and K, autoregressive
coefficients ¢;, IMAR coefficients v, j=0,...... ,T+L+1, stan-
dard error of orders process O standard error of demand process
O, lead-time L, and error terms at time periods j=t,...... ,t—T.
It is clear that ' improve when lead-time L increase. We expect
that INf 5 would also improve when autoregressive order p increase
and especially when Zﬁ.’ﬂ ¢; approach one. We move on to de-
velop the approximate expression for the producer’s average inven-
tory, under NIS strategy.

3.2.3. Derivation of the Average Inventory level under NIS strategy
Under NIS strategy, the producer optimal Order-Up-To inventory
level TN is expressed by the below equation.

NS — NS Kag\/ﬁ (9c)

Where

i=1

1
L1 p
M{ws _ E(Z%H/pt) ~c(L+1) (1 Z¢1>
j=1
T L+1+i N .
+ Z ( Z l/’j)sti

i=0 \j=1+i
And

VNIS MSENIS

So, by substituting M;"> and VNS expressions in (9¢) and then
by substituting (9¢) expression in (8c), finally we obtain NS ex-
pressed by the below equation.
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o~ c T L+1+i - .
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+Ka§. 3 ¥ (10¢)
i=0 \j=0

I7t‘”S in (10c) is a function of constants ¢ and K, autoregressive
coefficients ¢;, IMAR coefficients v, j=0,...... ,T+L+1, stan-
dard error of orders process oz, lead-time L, and error terms at

time periods j=t,...... ,t —T. It is clear that M improve when
lead-time L increase. We expect that if IS would also improve when
autoregressive order p increase and especially when Zﬁ.’zl ¢; ap-
proach one. Before moving on to Section 4, we precise that our
expected findings in this section will be confirmed by simulation.
Thus, we continue in Section 4, with simulation in order to gen-
eralize conclusions and managerial implications under a general
ARMA(p, q) demand model.

4. Simulation

We develop simulation of different ARMA(p, q) demand and or-
ders processes and we generate the performance metrics values
and figures under Matlab 2013b software on windows system. In
this section, we study DDI strategy sensibilities with autoregres-
sive and moving average parameters at first, and with regard to
lead-time and SMA parameters at second. Then, we make a com-
parative study with NIS and FIS strategies. Finally, we study the
improvement in terms of Bullwhip effect, resulting from using SMA
method rather than MMSE method. We note also that all simula-
tions and computations of equations in Section 3 were carried on a
Matlab manuscript. Since it is impossible to compute infinitely the
Y-weights, we compute the first 1000 IMAR coefficients of each
process and hence, all obtained results are estimations.

4.1. DDI sensitivity with regard to autoregressive and moving average
orders and coefficients

We first simulate ARMA(p, q) demand models with different or-
ders values (p,q < {0, 1,2, 4, 8}%) while maintaining causality and
invertibility criteria’s (¢; and ¢; do not add up to one) and taking
into account the uniqueness of demand processes (Zhang, 2004). In
this first part of simulation, we compute both MSEP?' and P!, for
the following fixed parameters: ¢ = 10; ogz =1;L=5N=12; h =
1; s = 2. These parameters were randomly chosen but still similar
to literature parameters to ensure comparability for future works.

Table 2 resumes results for simulating ARMA(p, q) demand pro-
cesses and calculating the producer’s MSEPP! and [PP!, and this for
¢jel-1,1]Vj=1,.....,pand 0 e [-1,1] Vj=1,....., q. From the
first three models of the table, when the demand parameters are
fixed at p=1 and q =0, we can see that MSEPP! and [PP! dete-
riorate on ¢,. This result coincides with the literature findings for
an AR(1) demand process. The same finding is made for the next
three models of Table 2; MSEPP' and [PP! deteriorate on 6; for a
MA(1) demand model. The percentage increase of the two indexes
clearly differs on AR(p) and MA(q) models. Indeed, in our simu-
lation, when ¢; increased from 0.5 to 0.6, MSEPP! deteriorated by
about 38% and PP by about 28%. Facing it, when 6; increased
from 0.5 to 0.6, MSEPP! deteriorated by about 11% and P”' by
about 5%. The AR and MA structures clearly influence MSEPP! and

ftDD’ results and so decision makers must take into account the
structure of the demand as an important factor for improving their
forecast.

Important comparison cases take place when we compare
results for fixed p and variable q or vice versa. Intuitively, we

expected that, MSEP?' and PP would increase on p for fixed
q or on q for fixed p. Simulation proved that is not the case.
Indeed, for example, the MSEPP' and [PP! results, for the sim-
ulated ARMA(8,1) in Table 2, are lower than ARMA(1,1)’s
results. We have the same findings when comparing ARMA(S, 2)
and ARMA(1, 2)’s results. It concludes that MSEPP' and [PP! would
depend on ¢;'s values Vj=1,....,pand 0;'s values Vj=1,......q
rather than autoregressive order p and moving average order q.
Then, for all the rest of simulated ARMA(p,q) demand pro-
cesses (from model 7 to model 19), we find the same results as for
AR(1) and MA(1) processes; i.e. for fixed orders p and q, MSEPD!
and [PP! deteriorates in a first way, as ¢; increase while main-
taining {(j)._1 } and {0j_; . 4} having fixed values; or in

J P
Jj#i
a second way, deteriorates when 6; increase while {¢;_; _ ,} and
{9j -1 } are fixed sets. This means that DDI performance

J#i
depend on demand time-series structure, and especially would in-
crease as demand is less correlated to delayed demands and error
terms. It would be interesting to study and mathematically gener-
alize how the two performance metrics evolve with regard of ¢;
and 6¢; increase. Since this is not a straightforward task, we plan to
focus on this line for future work.

4.2. DDI sensitivity with regard to lead-time and SMA parameters

We move on to study the stability of the two performance met-
rics behaviors with regard to N and L. Table 3 presents the consid-
ered ARMA(p, q) autoregressive and moving average coefficients for
all the figures set. Here also, we simulated ARMA(p, q) processes
by considering ¢; and ¢; that do not add up to one and consider
the following fixed parameters: ¢ = 10; aéz =1;h =1, s=2

The figures below (Figs. 1-4) show the 3D-behavior of MSEPP!
and PP for different ARMA(p, q) demand processes and for vari-
able parameters L and (L=1,.....,20& N=1,.....,20). Then, for
each figure, we present (see Appendix B) the projection on the first
plan and the projection on the second plan. This is done for a bet-
ter understanding and analysis of MSEPP! and [PP! behaviors.

The figures set show the robustness of the typical behavior of
MSEPP! and PP performance metrics. The results are shown in
different colors. The SMA parameter N increases as we move from
the blue to the red color. For each color (each fixed N), MSEPP! and

PP deteriorate on lead-time L. We note that the improvements
of MSEPP! and P on N is logarithmic, but the two performance
metrics descent slopes are different. It means that, as it was no-
ticed in the literature, the percentage of amelioration in MSEPD!
and PP js different. Note also that these ameliorations differ for
low and high values of N. For example, when we look at the pro-
jections on the first plan (MSE ~ N), the point N = 12 can be con-
sidered as a threshold above which the MSEPY! and PP amelio-
rations are not anymore important, in comparison with low values
of N where improvements are considerable. Mathematically, this
findings are understandable due to the non-linear form that links
MSEPP! to PPI.

From the projections on the second plans (MSE ~ L), we can
see that the deterioration of MSEPP! when the lead-time L in-
creases, has an exponential shape. This exponential deteriorate is
such important as N decreases. For [PP! level metric, the shape is
logarithmic for high values of N and becomes linear for low values
of N. These numerical findings confirm our theoretical analysis as
MSEPP! and [PP! are less sensible to L for higher values of N.

We conclude from this analysis that, for any causal invertible
ARMA(p, q) demand at the retailer, the producer’s forecast will
be more valuable in terms of MSEPP' and PP when he uses
higher values of SMA parameter N, and relatively lower values of
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Table 2
MSEPP" and PP! results for simulated ARMA(p, ) demands.
Model Autoregressive Moving average  Autoregressive Moving average =~ MSEPP! ot
order p order q coefficients ¢; coefficients 60;
1 1 0 ¢1 = 0.400 20.3867 11.5614
2 1 0 ¢1 =0.500 26.7926 14.3894
3 1 0 ¢ = 0.600 36.5808 18.7090
4 0 1 6; = 0.400 16.2400 07.4301
5 0 1 6, = 0.500 18.5000 07.7789
6 0 1 61 = 0.600 20.9400 08,1536
7 1 1 ¢1 = 0.400 6; = 0.051 22.3074 11.8812
8 1 1 ¢1 = 0.400 6, = 0.100 24.2527 12.2041
9 1 1 ¢ = 0.400 61 =0.300 33.2078 13.6816
10 1 2 ¢1 = 0.400 6, =0.300 374282 14.4392
6, = 0.100
1 1 2 ¢1 = 0.400 6, = 0.300 39.6913 14.8415
6, = 0.150
12 1 2 ¢1 = 0.400 6, = 0.300 42.0563 15.2594
6, = 0.200
13 1 4 ¢ = 0.400 6; =0.300 44.6284 15.8453
6, = 0.180
65 = 0.060
64 = 0.050
14 2 1 ¢1 = 0.200 6, =0.100 19.6140 10.8756
¢, =0.150
15 4 1 ¢1 =0.200 6, = 0.100 241279 15.9735
¢> = 0.150
¢3 =0.120
¢4 =0.100
16 4 2 ¢ =0.200 61 = 0.100 26.5067 16.4101
¢, = 0.150 6, = 0.065
¢3 =0.120
¢4 =0.100
17 4 4 ¢1 = 0.200 6, =0.100 29.7530 17.0342
¢, = 0.150 6, = 0.065
¢3 = 0.120 653 = 0.060
¢4 = 0.100 64 = 0.051
18 8 1 ¢1 = 0.200 6, = 0.100 12.8447 8.4158
¢, = —0.150
¢3 = 0.120
¢4 = —0.100
¢s = 0.080
¢s = 0.070
¢7 = 0.060
¢s = —0.051
19 8 2 ¢1 = 0.200 6, = 0.100 13.8480 8.6012
¢ = —0.150 6, = 0.060
¢ = 0.120
¢4 = —0.100
¢s = 0.080
¢ = 0.070
¢7 = 0.060
¢g = —0.051
Mean Squared Emor under DDI strategy for an ARMA(4,1) Demand process Average Inventory level under DDI strategy for an ARMA(4,1) Demand process
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Fig. 1. 3D plots of MSEP™ and PP behaviors under ARMA(4, 1) demand model.
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Average Inventory level under DDI strategy for an ARMA(8,1) Demand process
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Fig. 2. 3D plots of MSEPP" and PP behaviors under ARMA(8, 1) demand model.

Average Inventory level under DDI strategy for an ARMA(8,2) Demand process
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Fig. 3. 3D plots of MSEPP" and PP behaviors under ARMA(8, 2) demand model.

Average Inventory level under DDI strategy for an ARMA(8,8) Demand process
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Fig. 4. 3D plots of MSEPP" and PP behaviors under ARMA(8, 8) demand model.
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Table 3
Considered ARMA(p, q) autoregressive and moving average coefficients.
Model p q b 0;
20 4 1 ¢ =0.25 6, =0.2
¢, =0.2
¢35 =0.12
¢4 =0.09
21 8 1 ¢1 =0.25 6, =0.2
¢ =0.2
¢35 =-0.12
¢4 =0.09
¢s = —0.08
¢ = 0.07
¢; =0.06
¢s = —0.051
22 8 2 ¢1 =0.25 6, =02
¢, =0.2 6, =0.15
¢3 =-0.12
¢4 =0.09
¢s = —0.08
¢ = 0.07
¢7 =0.06
¢s = —0.051
23 8 8 ¢ =0.25 6, =02
¢, =0.2 6, =0.15
¢3 =-0.12 63 =-0.1
¢4 =0.09 64 =—-0.09
¢s = —0.08 65 = 0.08
¢ = 0.07 65 = 0.075
¢; =0.06 6; = 0.065
¢s = —0.051 63 = 0.05
Table 4
MSE and I; results under the three considered strategies.
Model MSENIS MSEDD! MSEFIS i{\lls iPDI itFIS
1 67.3756 203867  13.5072 19.6936 11.5614 9.4501
2 138.3996  26.7926  17.4580 33.0452 143894  11.1082
3 300.1029  36.5808  23.1328 623794 187090  13.6147
4 11.7600 16.2400 10.8000  7.8951 07.4301 6.2638
5 13.5000 18.5000  12.2500  8.5608 07.7789  6.3640
6 15.3600 20.9400 13.8000  9.3215 08,1536  6.4833
7 74.3786 22.3074 14.7117 21.3331 11.8812 9.5112
8 814330 24.2527 15.9216 23.0569  12.2041 9.5812
9 113.5408 33.2078  21.3956 31.7447 13.6816  9.9825
10 131.3007 374282 23.8242  37.0936 144392 10.0655
1 140.6645  39.6913 25.0987  40.1215 14.8415 10.1215
12 150.3507  42.0563  26.4134  43.2234 152594  10.1873
13 166.6726  44.6284  27.6609  48.7798  15.8453  9.9736
14 49.8496 19.6140 13.0142 17.7593 10.8756  8.5646
15 82.8049 241279 15.8459  34.5483  15.9735 11.6831
16 90.6387 26.5067  17.1084 37.3469 16.4101 11.6717
17 99.4028 29.7530  18.4831 411695 17.0342 11.4517
18 14.6534 12.8447 8.8315 10.3757 8.4158 6.9187
19 15.5426 13.8480 9.5114 10.5792 8.6012 6.9232

lead-time L. This characterization is independent of demand’s au-
toregressive and moving average orders (p,q) and coefficients ¢;
and 6;.

J

4.3. DDI strategy with regard to NIS and FIS strategies

For our comparative study, we considered the same models
simulated in Table 2 and the same fixed parameters: ¢ = 10; ag =
1;L=5N=12; h = 1; s=2. Then, we compute each perfor-
mance metric for the three strategies. The results of our simula-
tions are shown in Table 4.

From the first look at Table 4, FIS outperforms both NIS and
DDI in terms of MSE and I; and so, for any considered ARMA(p, q)
of demand process at the retailer. We obtain the same evidence
as previous researches. On one hand, FIS outperforms NIS due to
beneficial effects of information sharing. On the other hand, FIS

outperforms DDI due to MMSE method’s accuracy, which is more
accurate than SMA method.

We then focus on comparing DDI to NIS. We first analyze
the reported results in Table 4 by considering the three first
models. For AR(1) demand models, our findings are similar to
the literature results. DDI strategy outperforms NIS for ¢; large
enough (¢; € {0.4, 0.5, 0.6}). Ali et al. (2017) illustrated the
break-point from which DDI outperforms NIS, and which was eval-
uated at 0.24 for L=1 and N =6.

For MA(1) demand models 4-6, we find that MSEPD! ex-
ceedsMSEN'S, despite IMS exceeds IPP'. This finding is an expected
result because, when the autoregressive order p is equal to 0, the
demand is only depending on error terms, and the optimal MMSE
method outperforms the SMA method as the method effect over-
weight the Bullwhip effect. Hence, NIS is more valuable than DDI
in terms of MSE. We verify this result, which stay valid for any
MA(q), q > 0 demand models.

From model 7 to model 19 in Table 4, we vary the autore-
gressive and moving average parameters p and q and for different
ARMA(p, q) models, MSE and I; kept the same behavior through
the three strategies, but we notice that percentage ameliorations
are different between the two performance metrics. This can be
explained by the non-linear function, which relies I; to MSE in
Eq. (8).

Before we go on to next subsection, we briefly recall the ob-
tained results. DDI performance depends on demand time-series
structure, and especially would increase as demand is less corre-
lated to delayed demands and error terms. When adopting DDI
strategy, supply chain managers should exponentially increase the
SMA parameter N in their forecast when lead-time L increases. FIS
always outperforms DDI and NIS due to information sharing bene-
fits. In terms of MSE, DDI outperforms NIS beyond a certain break-
point depending on demand time-series structure. In terms of I,
DDI outperforms NIS for all simulated demand processes. We go
on to study the Bullwhip effect performance, which separates SMA
to MMSE.

4.4. Simulation on Bullwhip effect

To numerically illustrate the behavior of the so-called Bullwhip
effect, we consider as an example, an ARMA(2,2) demand pro-
cess with ¢ = 10 and ogz =1 and then we consider different values
of coefficients ¢; and 6;, SMA parameter N and lead-time L. We
mainly compute the BWP in order to have an idea on the Bullwhip
effect accordingly to the employed forecast method.

Table 5 provides some conclusions on the behavior of Bullwhip
effect when MMSE and SMA methods are used in the forecasts of
the retailer. The BWP indicator decreases as the autoregressive co-
efficients

¢1and ¢, increase. This means that the performance of SMA
method, compared to the MMSE method, improves as the de-
mand’s auto-regression is more important. In the same way, the
BWP indicator decreases as the moving average coefficients #; and
6, increase, which means that the performance of SMA method,
compared to the MMSE method, improve as the demand becomes
more correlated with delayed errors. Accordingly to the lead-time
L, the BWP indicator increases as L increases. That means that the
performance of SMA, compared to the MMSE method, deteriorates
on L. Reversely, accordingly to the SMA parameter N, the BWP in-
dicator decreases as N increases. That means that the performance
of SMA, compared to the MMSE method, improves on N.

Through the totality of models in Table 5, the SMA method out-
performs the MMSE method in terms of Bullwhip effect (BWP < 1).
This is a strong point for the SMA method, compared to the MMSE
method, as SMA method provides a lower variability of orders pro-
cesses.



Y. Tliche et al./European Journal of Operational Research 274 (2019) 65-77 75

Table 5
Bullwhip effect performance between SMA and MMSE methods.
Model  Autoregressive Moving average L N BwP
coefficients ¢; coefficients 6;
24 ¢$1 =04 6; =0.15 5 12 0.1960
¢, =02 6, =0.10
25 ¢1 =0.45 6, =0.15 5 12 0.1528
¢, =02 6, =0.10
26 ¢$1 =05 6, =0.15 5 12 01178
¢ =02 6, =0.10
27 ¢$1 =04 6 =0.15 5 12 0.1309
¢, =03 6, =0.10
28 ¢ =04 6, =0.20 5 12 0.1926
¢ =02 6, =0.10
29 ¢$1 =04 61 =0.20 5 12 0.1883
¢, =02 6, =0.15
30 ¢ =04 6, =0.15 8 12 0.2469
¢, =02 6, =0.10
31 ¢ =04 6, =0.15 5 15 0.1703
¢ =02 6, =0.10
Table 6

NIS and DDI results for ARMA(2, 1) demand process.

Adopted strategy NIS DDI % of reduction when
adopting DDI rather than
NIS

MSE 49.8496 19.6140 60.6536

I; 17.7593 10.8756  63.2948

Despite the accuracy of MMSE method, SMA method remains
a convenient mean to reduce the Bullwhip effect as it employs
the less variable demand due to inference. As accuracy implica-
tion (Inventory costs) remains the end measure that must be taken
into account, rather than accuracy itself (BWP), we propose in the
next section, a concrete managerial insight, where DDI with SMA
method, is much more valuable than NIS with MMSE method.

5. A revenue sharing contract as a practical recommendation

In this section, we provide a convenient way to show that prac-
tical limitations of DDI strategy can be canceled in the cases where
both supply chain actors are favorable for negotiation. Let first con-
sider an example where the demand follows an ARMA(2,1). We
have already shown the results reported in Table 6.

This example shows that adopting DDI strategy by both the re-
tailer and the producer, results in a reduction of nearly 63% in the
producer’s Average Inventory level, in comparison with NIS strat-
egy. Based on this reduction, the producer can deduce the percent-
age decrease on his average inventory cost, over a duration of T
periods. The producer may propose a contract to the retailer based
on principal agent, or the two actors can negotiate through pro-
posal generation. As example, a revenue sharing contract can be
proposed by the producer, over a certain period T.

Table 7
Different situations where DDI is valuable.

If the retailer has already adopted the SMA forecast method,
he only endures the basic costs of data transfer (SMA parameter,
demand process and updated coefficients every time period t). We
denote C! the total costs of the retailer, related to data transfer,
over the period T.

In the case where the retailer was adopting another forecasting
method, the retailer has additional costs related to the dismantling
of the old method and the adoption of the SMA method (time, la-
bor and technical requirements). We denote C? the total costs of
the retailer related to SMA method adoption, over the period T.

Information systems of both supply chain actors can be com-
patible. Otherwise, the retailer will bear an additional cost C3 if he
is the only responsible of systems compatibility. Assuming C > 0
and Y2, C' < CR, where CR is the average cost reduction at the
producer over the period T, resulting from adopting DDI strategy,
the producer can propose a revenue sharing contract based on
Table 7.

Our main recommendation is to adopt the DDI approach if it
has value. Table 7 provides a mean to distinguish when DDI is
valuable. Accordingly to the situation case, the shared revenue SR
is expressed by the below equation.

3
SR=a |CR-)C (11)

i=1

Where SR is the shared revenue at the end of period T and « is
the fraction of revenue (subject of negotiation) proposed by the
producer to the retailer. The « coefficient may be determined by
considering the bargaining power of actors. Otherwise, 0.5 can be
a fair value for both parties.

This reasoning can be extended to supply chains where there
is more than two actors. Every upstream actor can propose such
a contract to his formal downstream actor in order to adopt DDI
strategy and the overall supply chain will considerably gain in
terms of costs and trust for future cooperative approaches. If we
suppose that all costs at the downstream actor, related to DDI
adoption are lower than average cost reduction at the upstream
actor; moreover, if we suppose that a whole supply chain adopts
DDI strategy through such revenue sharing contracts, then every
actor i within the supply chain, will gain the revenue R; expressed
by the below equation.

Ri=0i 1(CRi_1 —G) + (1 — ;) (CR; — Gipy) (12)

Where «;_; and «; are the fractions of revenues proposed respec-
tively, by the upstream actor (i — 1) to actor i, and by the actor i to
his formal downstream actor (i + 1), CR;_; and CR; are the average
inventory cost reductions respectively, at upstream actor (i—1)
and at actor i over the period T, and finally, G; and G, are the total
costs related to DDI adoption, respectively, at actor i and at down-
stream actor (i+ 1) over the period T. Therefore, if we consider
a N-level supply chain, the total supply chain revenue SC_Revenue
from adopting DDI strategy with a revenue sharing contract be-
tween every couple of actors, is expressed by the below equation.

Retailer’s forecast method

Costs borne by the retailer for adopting DDI strategy

Information systems are compatible

Information systems are incompatible

SMA is already adopted

> DDI is valuable if C' < CR
® Costs of data transfer C'
® Costs of SMA method adoption C?

SMA is not yet adopted

> DDI is valuable if C' +C? < CR

o Costs of data transfer C!

o Costs of data transfer C!
® Costs of systems compatibility C3
> DDI is valuable if C' +C3 < CR
® Costs of data transfer C'
® Costs of SMA method adoption C?
® Costs of systems compatibility C3
> DDI is valuable if C' +C? +C3 <CR
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N-1
SC_Revenue =y (CR; — Gi11) (13)
i=1

We conclude this section by recalling our results. When the de-
mand follows ARMA(p, q) process, supply chains can considerably
be enhanced by adopting DDI strategy where SMA method is used
for demand forecast. By proposing contracts of revenue sharing,
the actors within a decentralized supply chain may approach
optimal solutions through inventory cost reduction. Other types of
contracts may still be proposed.

6. Conclusion

For many years, studying decentralized information structures
was one of the main research topics for both academic and prac-
titioner views. The main question of enhancing the performance
of an overall supply chain, where actors do not want or are un-
able to share information still persist through time. In a decentral-
ized two-level supply chain constituted by a producer and retailer
where demand information is not shared, we study the robustness
of a relatively new phenomenon called Downstream Demand In-
ference (DDI) in a more general demand context. This strategy al-
lows an upstream actor to infer the demand arriving at his for-
mal downstream actor who uses Simple Moving Average (SMA)
method in his forecast instead of using optimal Minimum Mean
Squared Error (MMSE) method. DDI allows the upstream actor to
improve its forecast Mean Squared Error (MSE) and Average Inven-
tory level (I;), which directly lower inventory costs.

This paper is a follow-up study to previous work with the pur-
pose of generalizing existing results through theoretical analysis of
a model based on some strong assumptions. This paper general-
izes MSE and I; expressions for causal invertible ARMA(p, q) de-
mand processes under DDI strategy, No Information Sharing (NIS)
and Forecast Information Sharing (FIS), computes the Bullwhip ef-
fect generated by employing SMA method and provides an indi-
cator, which measures the performance separating SMA to MMSE
method. In a simulation section, the paper analyses the behavior
of the three performance metrics with respect to Simple Moving
Average (SMA) parameter N, lead-time L, demand’s autoregressive
order p and coefficients ¢;, and moving average order q and coef-
ficients 6;.

The implications of our paper are relevant. Supply chain man-
agers can introduce the use of SMA forecast method for a more
generalized ARMA(p, q) demand model. First, the paper concludes
that DDI performance depends on demand time-series structure,
and especially would increase as demand is less correlated to de-
layed demands and error terms. Second, the paper concludes that
supply chain managers, in the case where DDI is adopted, should
exponentially increase the SMA parameter N in their forecast when
lead-time L increases. Third, the paper confirms that FIS always
outperforms DDI and NIS due to information sharing benefits. The
value of information sharing is incontestable and FIS remains the
optimal strategy for supply chain actors. Fourth, in terms of MSE,
DDI outperforms NIS beyond a certain break-point depending on
demand time-series structure. In terms of J;, DDI outperforms NIS
for all simulated demand processes. Fifth, the paper concludes that
despite the accuracy of MMSE method, SMA method remains a
convenient mean to reduce the Bullwhip effect as it employs the
less variable demand due to inference. Finally, the paper presents a
revenue sharing contract as a practical recommendation in a man-
agerial accessible manner in order to adopt DDI strategy within
supply chains.

We conclude our paper with lines for future researches. First,
DDI strategy can still be evaluated through other forecasting meth-
ods. Second, it would be interesting to establish a general mathe-

matical relation, which allows determining the break-point of any
ARMA(p, q), p > 0 model, from which DDI is more valuable than
NIS strategy, in terms of MSE. Finally, our study may still be gen-
eralized to an ARIMA(p, d, q) model.

Supplementary materials

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.ejor.2018.09.034.
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