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a b s t r a c t 

For many years, the main objective of studying decentralized supply chains was to demonstrate that a 

better inter-firm collaboration could lead to a better overall performance of the system. The literature has 

demonstrated that collaborating by sharing information, even in a partial way, can lead to near-optimal 

solutions. In this context, many researchers have studied a phenomenon called Downstream Demand 

Inference (DDI), which presents an effective demand management strategy to deal with forecast prob- 

lems. DDI allows the upstream actor to infer the demand received by the downstream actor without the 

need of information sharing. Recent research showed that DDI is possible with Simple Moving Average 

(SMA) forecast method, and was verified for an autoregressive [ AR (1) ] demand process, a moving aver- 

age [ MA (1) ] demand process, and an autoregressive moving average [ ARMA ( 1 , 1 ) ] demand process. In this 

paper, we extend the strategy’s results by considering causal invertible [ ARMA ( p, q ) ] demand processes. 

We develop Mean Squared Error and Average Inventory level expressions for [ ARMA ( p, q ) ] demand under 

DDI strategy, No Information Sharing (NIS) and Forecast Information Sharing (FIS) strategies. We compute 

the Bullwhip effect generated by employing SMA method and we simulate the resulted improvement 

compared to employing MMSE method. We analyze the sensibility of the three performance metrics in 

respect with lead-time value, SMA and ARMA ( p, q ) parameters. We compare DDI results with NIS and FIS 

strategies’ results and we show experimentally that DDI generally outperforms NIS. Finally, we provide 

a revenue sharing contract as a practical recommendation to incite supply chain managers to adopt DDI 

strategy. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

A supply chain is two or more than two agents who inte-

rate with each other, in order to create and deliver value to fi-

al customers. A decentralized supply chain is characterizing by

ndependent agents with asymmetric information. In fact, in this

orm of supply chain, most of supply chain agents may not share

nformation due to confidentiality policies, quality of information

r different system’s incompatibilities. Every actor holds its own

et of information and try to maximize his objective (minimiz-

ng costs/minimizing inventory holdings) based on the available

ettings. Therefore, the agents control their own activities with

he objective of improving their own competitiveness, which leads

hem to make decisions that maximize their local performance by

gnoring the other agents or even the final consumer. These deci-

ions are called myopic because they do not take into account the

erformance of all the partners to satisfy this consumer. 
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Over the last fifteen years, a major movement of business part-

er’s integration to implement advanced and collaborative replen-

shment processes has emerged. Supply Chain Management (SCM)

as thus emerged in the service and production sectors in order

o identify and take advantage of new sources of improvement in

he competitiveness of companies. SCM therefore proposes strate-

ies and methods to reduce part costs whose origin is mainly due

o poor coordination of operations. The observation of collabora-

ion method implementation is very encouraging. Companies are

ble to better satisfy the consumer, by providing more availability

f products, services and less delay, while being more efficient by

aving less stock, using the resources in a better way and procur-

ng better return on used capital. 

One of the common collaborative approach can be resumed

y sharing information which described as a crucial key for

verall supply chain performance ( Asgari, Nikbakhsh, Hill, &

arahani, 2016; Ciancimino, Cannella, Bruccoleri, & Framinan,

012 ). Indeed, in most industry sectors, final customer demand

olatility need to be well considered by all supply chain actors,

s demand is the first engine of benefits of whole supply chain.

orecasting customer demand can be the key for safe inventory

evels and reducing inventory costs. Disney and Towill (2002) and

https://doi.org/10.1016/j.ejor.2018.09.034
http://www.ScienceDirect.com
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Ireland and Crum (2006) have reported that inventory levels can

be reduced to 50% and inventory costs reduced to 40% which

leads to a competitive success. In recent years, numerous studies

have emphasized the importance of information sharing within

the supply chain ( Barratt, 2004; Lambert & Cooper, 20 0 0; Lau and

Lee, 20 0 0; Trkman, Groznik, & Koohang, 20 06 ). 

The question of our paper is motivated by the recently pub-

lished work of Ali, Babai, Boylan, and Syntetos (2017) , who stud-

ied three different strategies to examine the information sharing

value in a two-level supply chain, under the hypothesis of an AR (1)

demand process. The first strategy, called No Information Shar-

ing (NIS), is a decentralized demand management strategy where

the demand information is not shared, and the upstream actor

would simply base its forecasting on the orders received from the

downstream actor. The second strategy, called Forecast Information

Sharing (FIS), presents a centralized demand management strategy

where the upstream actor has access to the demand at the down-

stream actor, and thus bases its forecast on the shared informa-

tion. Between the NIS strategy, which presents sub-optimal solu-

tions and FIS strategy, which presents optimal solutions, a third

approach, called Downstream Demand Inference (DDI) strategy, al-

lows to enhance the performance of the decentralized system to

have near-optimal solutions. Instead of sharing demand informa-

tion, the two supply chain actors infer the demand and the de-

duced customer’s demand is using in the forecast. Ali and Boy-

lan (2012) showed that DDI could not be applied with optimal

forecasting methods, but only with Simple Moving Average (SMA)

method, which is widely used in the literature. 

The reports of DDI’s results were consistent. First, FIS is in most

of the cases the best strategy as actors behave optimally by sharing

information and there is no need of inference. Second, DDI strat-

egy improves on NIS by reducing Mean Squared Error ( MSE ) for

higher values of autoregressive parameter (beyond a certain break-

point), and reducing inventory costs for higher values of lead-time

and SMA’s order. The improvements on MSE and inventory costs

were not proportional which confirmed the finding of Boylan and

Syntetos (2006) who mention that accuracy implication (Inven-

tory costs) is the end measure that must be taken into account,

rather than accuracy itself ( MSE ) . Information sharing values were

evaluated especially when the demand followed an AR (1) , MA (1)

or ARMA ( 1 . 1 ) processes. In this paper, we extend the results of

the authors to situations where the demand follows an invertible

causal ARMA ( p, q ) process. We show through simulation, that DDI

always outperforms NIS in terms of Average Inventory level ( ̃ I t ) ,

and for the most of cases in terms of MSE. 

The rest of the paper is organizing as follows. Section 2 is de-

voted to the literature review. In Section 3 , we derive the MSE and
˜ I t expressions, for an invertible causal ARMA ( p, q ) demand process,

under NIS, DDI and FIS strategies. We also present Bullwhip effect

expressions with SMA and MMSE method and we propose an indi-

cator of the performance separating the two methods. We simulate

different ARMA ( p, q ) processes, generalize MSE and 

˜ I t behaviors for

variable parameters under the considered strategies, and study the

Bullwhip effect improvement in Section 4 . In Section 5 , we pro-

pose a revenue sharing contract as an incentive to adopt DDI strat-

egy by supply chain managers. Finally, in Section 6 , we present the

conclusions and implications of the paper, as well as the natural

avenues for future research. 

2. Literature review 

Information sharing among supply chain links can help achieve

important benefits such as increased productivity, improved policy

making and integrated services. Various papers ( Chen, Drezner,

Ryan, & Simchi-Levi, 20 0 0; Lee et al., 20 0 0 ) have shown that shar-

ing demand information reduces the so-called “Bullwhip Effect”.
he Bullwhip effect is essentially the phenomenon of demand

ariability amplification along a supply chain, from the retailers,

istributors, producer, and the producers’ suppliers, and so on.

ee, So, and Tang (20 0 0) characterize this phenomenon as demand

istortion, which can create problems for suppliers, such as grossly

naccurate demand forecasts, low capacity utilization, excessive

nventory, and poor customer service. Letting the upstream links

ave access to point-of-sales data, the harmful effect of demand

istortion is improving. The most celebrated implementation of

emand information sharing is Wal-Mart’s Retail Link program,

hich provides on-line summary of point-of-sales data to sup-

liers such as Johnson and Johnson, and Lever Brothers ( Gill &

bend, 1997 ). Indeed, demand information sharing between a

ownstream actor and his formal supplier can be viewed as the

ornerstone of initiatives, such as Quick Response (QR) and Effi-

ient Consumer Response (ECR). Often times, information sharing

s embedded in programs like Vendor Managed Inventory (VMI)

r Continuous Replenishment Programs (CRP). Major successes of

uch programs have been reported at companies like Campbell

oup ( Clark, 1994 ) and Barilla SpA ( Hammond, 1993 ). 

Although it was accepted by academic researchers and indus-

rial decision makers, that information sharing and managerial co-

rdination generally lead to improved supply chain performance

 La Londe, Ginter, & Stock, 2004 ), the potential weight of improve-

ent and performance allocation through supply chain actors stay

uzzy. Cachon and Fisher (20 0 0) report that information sharing

enefits through different researches is varying between 0% and

5% of total costs. The large deviation of reported results appears,

n some way, correlated to supply chains sectors, problems state-

ents and models assumptions. 

Sahin and Robinson (2005) analyses and identifies whether in-

ormation sharing or coordination are the source of supply chain

mprovement, analyses benefits allocation across supply chain ac-

ors and study the relationship between environmental factors and

ost decline. The authors reported a reduction of 47.58% in cost

hen adopting a centralized strategy. 

Based on a two-level decentralized supply chain, Yu, Yan, and

dwin Cheng (2001) illustrate the benefits of information sharing.

rom the comparison of cost savings and inventory reductions, the

uthors concluded that Pareto improvement is achieved with re-

pect to the whole supply chain performance, but at the same

ime, the benefits of the producer are more valuable than the ones

f the retailer. Hence, they recommend that partnership initiative

ust be taken by the producer and give some collaboration incen-

ives such as sharing logistic costs or guarantying supply reliability.

Despite all the potential advantages and benefits procured by

nformation sharing, the lack of availability of information systems

s one of the most common barriers to information sharing ( Ali

t al., 2017 ). SCM World ( Courtin, 2013 ) report that many com-

anies are hampered by the high investment costs and system

mplementation issues associated with formal information shar-

ng. Negotiation is the common issue to reduce supply chain par-

ies’ costs, as monetary losses remain the main reason for invest-

ent blockage ( Klein, Rai, & Straub, 2007 ). Information systems

osts are composed of the initial purchase costs and the time-

mplementation costs ( Fawcett, Osterhaus, Magnan, Brau, & Mc-

arter, 2007 ). Despite developers are constantly trying to find com-

atibility solutions, companies tend to resist change because of

ntra-organizational problems. Even when companies succeed in

mplementing information systems, the problem becomes a lack

f trust and a lack of dialogue and sharing ( Mendelson, 20 0 0 ).

ndeed, each partner is wary of the possibility of other partners

busing information and reaping all the benefits from information

haring ( Lee & Whang, 20 0 0 ). Hence, trust presents an important

actor so that decision makers only share information with their

rusted parties. 
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Besides these information-sharing inhibitors, even when infor-

ation technology and trust exist between partners, another type

f brakes can persist. It is firstly about information precision when

ecision makers do not trust shared information in terms of qual-

ty and estimate that error is relatively high ( Forslund & Jons-

on, 2007 ). Information leakage effect can also be a reason to

rame information sharing. Managers always fear the fact that the

hared information can be obtained or deduced by competitors

ho will react to the information sharing activity. As example,

ard ( wardsauto.com ) conducted a survey of 447 car suppliers in

hich 28% of survey respondents said their intellectual property

as revealed by at least one Detroit car producer and 16% said

heir intellectual property was revealed by car producers ( Anand &

oyal, 2009 ). As result, the reaction of the competitors may change

he benefits among the parties involved in information sharing ( Li,

002 ). Wal-Mart announced that it would no longer share its infor-

ation with other companies like Inc. and AC Nielson as Wal-Mart

onsiders data to be a top priority and fears information leakage

 Hays, 2004 ). Hence, many companies are conducting to control

heir information flows, which can lead to additional operational

osts ( Anand & Goyal, 2009 ). 

In the midst of all these discussions, Downstream Demand In-

erence appears as topical subject in the scientific community. It

s referring to a situation where the upstream actor of a supply

hain, can infer the demand occurring at the downstream actor,

ithout need of formal information sharing. A stream of papers,

uch as Raghunathan (2001) and Zhang (2004) , demonstrate that

eceived orders contain already demand information. Hence, they

how that demand information can be mathematically concluded

rom the order history of the downstream actor. 

Researchers on this stream of papers are based on two assump-

ions: The first one is the fact that orders received from the re-

ailer already contain the customer’s demand information. The sec-

nd one is that the demand process and its parameters are known

hroughout all the supply chain. Hence, if this is always true, FIS

s invaluable. In the paper of Ali and Boylan (2011) , the authors

resent feasibility principles and show that inferring customer de-

and in a precise manner by an upstream member is impossible

f model’s hypotheses are strictly realistic. Thus, they conclude that

IS has value in supply chains. The authors showed also that DDI

ould not be applied with optimal forecasting methods but only

ith Simple Moving Average (SMA) method, which is widely used

n the literature. This forecast method is based on the N most

ecent observations and in every future period, the oldest obser-

ation is dropped out and exchanged by the last observation. As

li and Boylan (2012) showed that, if a downstream actor accepts

o use SMA method for his forecasts, the upstream actor will be

ble to infer the actual downstream customer demand, Ali et al.

2017) applied DDI on real sales data and discussed the practi-

al implications. The authors showed that DDI outperforms NIS in

erms of forecast MSE and inventory costs under the assumption

f an AR (1) demand model and for high values of autoregressive

oefficient. They also studied the sensibility of DDI with regard to

MA’s order N and lead-time L and found that DDI is valuable for

igh values of N and relatively low values of L . As future works, it

as proposed to extend research on DDI strategy by considering a

ore generalized ARMA ( p, q ) demand model. 

Thus, we present in Table 1 recent and relevant works, which

re related to our research field, ordered by date of publication

ver the last two decades. 

Considering more realistic assumptions into demand models re-

ains one of the most important directions in inventory theory

 Graves, 1999 ). Many researchers have investigated the dependence

f the value of sharing information on the time-series structure

f the demand process using an Autoregressive Moving Average

ARMA) methodology. It has been argued that demands over con-
ecutive time periods are rarely statistically independent ( Graves,

999; Kahn, 1987; Lee et al., 20 0 0 ). Therefore, it would be ap-

ropriate to model the demand (tourism, fuel, food products, ma-

hines, etc.) process as auto-correlated time series as they are long

ifecycle goods. Based on these recommendations, we move on to

ext section in order to assess DDI performance under a more re-

listic and generalized ARMA ( p, q ) demand model, in comparison

ith NIS and FIS strategies. 

. Framework model assumptions 

We base our modeling framework on the works of Lee et al.

20 0 0) and Ali et al. (2017) . We consider a simple two-level supply

hain formed by a producer and a retailer. We thus consider the

ame model’s assumptions, except the time-series demand struc-

ure. As in above mentioned works, it is assumed that replenish-

ent policy follows a periodic review system, where downstream

ctors place their orders at upstream actors after examining their

espective inventory levels. Indeed, at time period t , demand D t is

ealized at the retailer who observes his inventory level and then

laces and order Y t before the end of the period. The producer pre-

ared the required quantity order Y t , and ships it to the retailer,

ho will receive it at period t + L + 1 . Here, L presents the replen-

shment time of both production and shipment. On one hand, it

s assumed that there is no order cost. On the other hand, unit

nventory holding cost and shortage cost are fixed and denoted re-

pectively by h and s . It is also assumed that both producer and

etailer adopt Order-Up-To policy, which minimizes the total costs

ver infinite time horizon ( Lee et al., 20 0 0 ). 

We assume that demand arriving at the retailer is an invertible

ausal ARMA ( p, q ) process (see properties 1 and 2 stated below).

et D t be the ARMA ( p, q ) demand process at the retailer, such as:

 t = c + 

p ∑ 

j=1 

φ j D t− j + ξt + 

q ∑ 

j=1 

θ j ξt− j (1) 

here c ≥ 0 determines the unconditional mean of the process

 t , φ j ∈ [ −1 , 1 ] are Autoregressive coefficients ( j = 1 , . . . .., p ) , θ j ∈
 −1 , 1 ] are Moving Average coefficients ( j = 1 , . . . .., q ) and ξt �
( 0 , σ 2 

ξ
) are independent and identically distributed ∀ t ∈ [0 , + ∞ [] .

lease note that for consideration of all ARMA ( p, q ) models, we do

ot exclude cases where q = 0 or p = 0 . In the case where q =
 , we consider causal AR (p) demand processes, and in the case

here p = 0 , we consider invertible MA (q ) demand processes. 

.1. Mean squared error generalization and demand amplification 

nder ARMA ( p, q ) demand model 

First, we focus on establishing the MSE expressions under DDI,

IS and NIS strategies whose proofs are stated in Appendix A.

e note here that, on one hand, we used causality and invert-

bility ARMA ( p, q ) ’s properties, �-weigths of Infinite Moving Av-

rage Representation (IMAR) of ARMA ( p, q ) models (see Shumway

 Stoffer, 2011 ). On the other hand, we follow standard time-

eries methods by defining d t as the mean-centered demand pro-

ess. MSE under DDI, FIS and NIS are, respectively, expressed by

qs. (2) –(4) . 

S E 

DDI = ( L + 1 ) γ0 + 2 

L ∑ 

j=1 

j γL+1 − j + ( L + 1 ) 
2 

[ 

γ0 

N 

+ 

2 

N 

2 

N−1 ∑ 

j=1 

j γN− j 

] 

− 2 ( L + 1 ) 

N 

L+1 ∑ 

j=1 

N−1 ∑ 

k=0 

γ j+ k (2) 

MS E DDI in Eq. (2) is a function of lead-time L , SMA fore-

ast’s order N and auto-covariance function γ j at time periods j =

http://wardsauto.com
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Table 1 

Recent works contributing on information sharing value. 

Work Typology of demand Forecasting method Adopted inventory 

policy 

Contributions Limitations 

Ali et al. (2017) AR (1) Simple Moving Average Order up to 

inventory policy 

DDI provides MSE reductions and cost 

savings on real sales data 

Restriction of the analysis to 

only one demand process 

Ali and Boylan 

(2012) 

ARMA ( p, q ) Simple Moving Average and 

Single Exponential 

Smoothing 

Order up to 

inventory policy 

DDI is not possible with optimal 

forecasting methods or Single 

Exponential Smoothing but only with 

Simple Moving Average method 

Not incorporating MSE or 

inventory metrics expressions 

for ARMA demand processes 

Ali et al. (2012) AR (1) , MA (1) and 

ARMA ( 1 , 1 ) 

Minimum mean squared 

error 

Order up to 

inventory policy 

Analytical relationships between 

forecast accuracy and inventory 

holdings 

Restriction of the analysis to 

only three demand processes 

Ali and Boylan 

(2011) 

ARMA ( p, q ) Minimum mean squared 

error 

Order up to 

inventory policy 

DDI is valuable if demand process and 

parameters are known for the 

producer 

Not incorporating MSE or 

inventory metrics expressions 

for ARMA demand processes 

Hosoda, Naim, 

Disney, and 

Potter (2008) 

AR (1) Minimum mean squared 

error 

Order up to 

inventory policy 

Information sharing is benefic in terms 

of standard deviation of predicted 

errors 

Restriction of the analysis to 

only three demand processes 

Hosoda and 

Disney 

(2006) 

AR (1) Minimum mean squared 

error 

Order up to 

inventory policy 

The retailer’s order history at the 

producer already contains 

information about the demand at the 

retail 

Restriction of the analysis to 

only one demand process 

Cheng and Wu 

(2005) 

AR (1) ARIMA methodology Order up to 

inventory policy 

FIS is valuable for two-level 

multi-retailer supply chain 

Restriction of the analysis to 

only one demand process 

Gaur, Giloni, 

and Seshadri 

(2005) 

ARMA ( p, q ) ARIMA methodology and 

Simple Moving Average 

Myopic order up to 

inventory policy 

The value of sharing demand 

information depends on the time 

series structure of the demand 

process 

Not investigating Bullwhip 

effect for ARMA demand 

processes 

Gilbert (2005) ARIMA ( p, d, q ) Minimum mean squared 

error 

Order up to 

inventory policy 

Different Bullwhip assumptions lead to 

different insights 

Restriction of the analysis to 

NIS strategy 

Zhang (2004) ARMA ( p, q ) Minimum mean squared 

error 

Order up to 

inventory policy 

The retailer’s order history at the 

producer already contains 

information about the demand at the 

retail 

Not incorporating MSE or 

inventory metrics expressions 

for ARMA demand processes 

Alwan, Liu, and 

Yao (2003) 

AR (1) Simple Moving Average, 

Single Exponential 

Smoothing and minimum 

mean squared error 

Order up to 

inventory policy 

Improved forecasting cannot eliminate 

the Bullwhip effect 

Restriction of the analysis to 

only one demand process 

Raghunathan 

(2003) 

AR (1) ARIMA methodology Order up to 

inventory policy 

FIS is valuable for two-level 

multi-retailer supply chain 

Restriction of the analysis to 

only one demand process 

Raghunathan 

(2001) 

AR (1) Minimum mean squared 

error 

Order up to 

inventory policy 

DDI is possible for AR (1) demand 

model 

Restriction of the analysis to 

only one demand process 

Chen et al. 

(20 0 0) 

AR (1) Simple Moving Average Order up to 

inventory policy 

Bullwhip effect is commonly caused by 

demand forecasting and order lead 

times 

Restriction of the analysis to 

only one demand process 

Lee et al. 

(20 0 0) 

AR (1) ARIMA methodology Order up to 

inventory policy 

Demand information sharing provides 

savings in inventory costs 

Restriction of the analysis to 

only one demand process 

Graves (1999) ARIMA ( 0 , 1 , 1 ) Exponential-weighted 

moving average 

Adaptive base-stock 

control policy 

The retailer’s order history at the 

producer already contains 

information about the demand at the 

retail 

Restriction of the analysis to 

only one demand process 
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0 , . . . . . . , L + N. As γ j is a decreasing function on j, and by look-

ing at the four components of (2) , it becomes clear that the third

component overweight the fourth one, with respect to N. Indeed,

as the third component is inversely proportional to N and N 

2 , we

conclude that MS E DDI reduces as the SMA order N increases. In the

same way, the third component, which is proportional to L 2 , in ad-

dition to the first component, overweight the fourth one with re-

spect to lead-time L . Furthermore, by looking at third and fourth

component, it is expected that MS E DDI will be more sensitive to N,

for higher values of L . Reciprocally, MS E DDI is expected to be less

sensitive to L , for higher values of N. 

MS E 

F IS = σ2 
ξ

⎡ ⎣ 

L ∑ 

i =0 

( 

i ∑ 

j=0 

ψ j 

) 2 
⎤ ⎦ (3)

MS E F IS in Eq. (3) is a function of lead-time L , IMAR coeffi-

cients ψ j , j = 0 , . . . . . . , L and is a linear function on σ 2 
ξ

. We can

so expect that MS E F IS improves as L increases, especially in a log-

arithmic manner when we know that ψ is a decreasing function.
his finding is confirmed in Section 4 . 

S E 

NIS = σ2 
˜ ξ

⎡ ⎣ 

L ∑ 

i =0 

( 

i ∑ 

j=0 

˜ ψ j 

) 2 
⎤ ⎦ = β2 σ2 

ξ

⎡ ⎣ 

L ∑ 

i =0 

( 

i ∑ 

j=0 

˜ ψ j 

) 2 
⎤ ⎦ (4)

MS E NIS in Eq. (4) is a function of lead-time L , IMAR coeffi-

ients ˜ ψ j , j = 0 , . . . . . . , L and is a linear function on σ 2 
˜ ξ
. The ex-

ression on β at the right side of (4) is only provided to show the

elation with the variance of demand error. We make the same

easoning as before, and expect that MS E NIS improves as L in-

reases, especially in a logarithmic manner when we know that ˜ ψ 

s a decreasing function. This finding is also confirmed in Section 4 .

Second, we focus on studying the orders amplification (Bull-

hip effect), for an ARMA ( p, q ) demand process at the retailer.

his metric is computable accordingly to the forecasting method

dopted by the retailer and the resulting orders process placed at

he producer. In this part, as the employed method affects the na-

ure of orders process, we denote ˜ ψ j and 

˜ ˜ ψ j the IMAR coefficients
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f orders process, respectively, in the cases where MMSE and SMA

ethods are adopted by the retailer. 

On one hand, when the MMSE forecasting method is adopted

y the retailer, the AIAO property ( Zhang, 2004 ) provides a conve-

ient means for quantifying the Bullwhip effect. As the ARMA ( p, q )

rocess at the retailer transforms into an ARM A ( p, M ax ( p, q − L ) )

rocess at the producer, and considering the IMAR coefficients of

emand and orders processes, respectively, ψ j and 

˜ ψ j , the ratio

f the unconditional variance of the orders process to that of de-

and process, namely the Bullwhip effect is measured by the be-

ow equation. 

W e f f ec t M M SE = 

V ar ( Y t ) 

V ar ( D t ) 
= 

( 

L ∑ 

j=0 

ψ j 

) 2 ( ∑ + ∞ 

j=0 
˜ ψ 

2 
j ∑ + ∞ 

j=0 ψ j 
2 

) 

= β2 

( ∑ + ∞ 

j=0 
˜ ψ 

2 
j ∑ + ∞ 

j=0 ψ j 
2 

) 

(5) 

On the second hand, when the SMA forecasting method is

dopted by the retailer, the ARMA ( p, q ) process at the retailer

ransforms into an ARMA ( p, q + N ) process at the producer where
˜ 
t = ( L N + 1 ) ξt is the error term of orders process ( Ali & Boylan,

012 ). We show in the proof below, that the ARMA ( p, q + N ) pro-

ess at the producer can be rewritten in a second manner, as

n ARMA ( p, q ) process where 
˜ ˜ ξ t = ( L N + 1 ) ξt − L 

N ξt−N is the error

erm of orders process. Considering the lead-time L , the parame-

er N and the IMAR coefficients of demand and orders processes,

espectively, ψ j and
˜ ˜ ψ j , the Bullwhip effect is measured by the 

elow equation. 

W e f f ec t SMA = 

V ar ( Y t ) 

V ar ( D t ) 
= 

2 L 2 + N 

2 + 2 NL 

N 

2 

⎛ ⎝ 

∑ + ∞ 

j=0 ̃

 ˜ ψ 

2 

j ∑ + ∞ 

j=0 ψ 

2 
j 

⎞ ⎠ (6) 

Proof: 

Let Y t be the orders process arriving at the producer. Under

MA method, Y t is expressed by (see Ali & Boylan, 2012 ): 

 t = c + 

p ∑ 

j=1 

φ j Y t− j + 

q ∑ 

j=0 

θ j ̃
 ξt− j −

(
L 

L + N 

) q ∑ 

j=0 

θ j ̃
 ξt−N− j 

With 

˜ 
t = 

(
L 

N 

+ 1 

)
ξt 

here ξt is the error term of demand process at period t . 

Let 

 ˜ 
t− j = 

˜ ξt− j −
L 

L + N 

˜ ξt−N− j ∀ j = 1 , . . . , q 

Y t can be written in a second manner as follows: 

 t = c + 

p ∑ 

j=1 

φ j Y t− j + 

q ∑ 

j=0 

θ j ̃
 ˜ ξ t− j 

here 
˜ ˜ ξ t = 

˜ ξt − L 
L + N ˜ ξt−N = ( L N + 1 ) ξt − L 

N ξt−N is the error term of

rders process at period t and ̃

 ˜ ξ t � N( 0 , 2 L 2 + N 2 +2 NL 
N 2 

σ 2 
ξ
) 

Hence, we show that the ARMA ( p, q ) process at the retailer

ransforms into an ARMA ( p, q ) process at the producer with dif-

erent error terms. Let 
˜ ˜ ψ j be the IMAR coefficients of the orders

rocess Y t . 

As σ 2 ˜ ˜ ξ = V ar( ̃
 ˜ ξ t ) = V ar( ( L N + 1 ) ξt − L 

N ξt−N ) = 

2 L 2 + N 2 + NL 
N 2 

σ 2 
ξ

, we

nally obtain: 

W e f f ec t SMA = 

V ar ( Y t ) 

V ar ( D t ) 
= 

V ar 

(∑ + ∞ 

j=0 ̃
 ˜ ψ j ̃

 ˜ ξ t− j 

)
V ar 

(∑ + ∞ 

j=0 ψ j ξt− j 

) = 

(∑ + ∞ 

j=0 ̃
 ˜ ψ 

2 

j 

)
σ 2 ˜ ˜ ξ(∑ + ∞ 

j=0 ψ j 
2 
)
σ 2 

ξ

 BW e f f ec t SMA = 

2 L 2 + N 

2 + 2 NL 

N 

2 

⎛ ⎝ 

∑ + ∞ 

j=0 ̃
 ˜ ψ 

2 

j ∑ + ∞ 

j=0 ψ j 
2 

⎞ ⎠ 

Considering the obtained expressions of Bullwhip effect with

MSE and SMA methods, we can simply consider the ratio of

W e f f ec t SMA to BW e f f ec t M M SE which may be a convenient indi-

ator of Bullwhip effect improvement between the two methods.

e denote this indicator by BW P which is expressed by the below

quation. 

W P = 

BW e f f ec t SMA 

BW e f f ec t M M SE 
= 

2 L 2 + N 

2 + 2 NL (
Nβ

)2 

⎛ ⎝ 

∑ + ∞ 

j=0 ̃

 ˜ ψ 

2 

j ∑ + ∞ 

j=0 
˜ ψ 

2 
j 

⎞ ⎠ (7) 

BW P is a linear function of the ratio of the squared IMAR co-

fficients resulted from the orders process when SMA method is

mployed, to the squared IMAR coefficients resulted from the or-

ers process when MMSE method is employed. 

We go on to establish the producer Average Inventory levels ˜ I t 
xpressions under DDI, NIS and FIS. 

.2. Average Inventory level generalization under ARMA ( p, q ) 

emand model 

In this section, we establish Average Inventory levels ˜ I t expres-

ions associated with DDI, FIS and NIS strategies. The Average In-

entory level under Order-Up-To policy is given by the below equa-

ion (see Ali, Boylan, & Syntetos, 2012 ): 

˜ 
 t = T t − E 

( 

L +1 ∑ 

i =1 

Y t+ i 

) 

+ 

E ( Y t ) 

2 

(8) 

here T t is the producer optimal Order-Up-To inventory level. In

his case, T t is given by the below equation (see Lee et al., 20 0 0 ):

 t = M t + K σ ˜ ξ

√ 

V (9) 

And where M t and V are respectively, the conditional expec-

ation and conditional variance of the total demand over the

ead-time, and K = F −1 
N( 0 , 1 ) 

( s 
s + h ) for the standard normal distribu-

ion F N( 0 , 1 ) . Eq. (8) allows us to write: 

˜ 
 

DDI 
t = T DDI 

t − E 

( 

L +1 ∑ 

i =1 

Y t+ i 

) 

+ 

E ( Y t ) 

2 

(8a) 

˜ 
 

F IS 
t = T F IS t − E 

( 

L +1 ∑ 

i =1 

Y t+ i 

) 

+ 

E ( Y t ) 

2 

(8b) 

˜ 
 

NIS 
t = T NIS 

t − E 

( 

L +1 ∑ 

i =1 

Y t+ i 

) 

+ 

E ( Y t ) 

2 

(8c) 

First, we express the terms in common, E( Y t ) and E( 
∑ L +1 

i =1 Y t+ i ) .
n one hand, we have: 

 ( Y t ) = μy = 

c 

φ0 −
∑ p 

j=1 
φ j 

= c 

( 

1 −
p ∑ 

j=1 

φ j 

) −1 

On the other hand, we have: 

 

( 

L +1 ∑ 

i =1 

Y t+ i 

) 

= ( L + 1 ) μy + E 

( 

L +1 ∑ 

i =1 

y t+ i 

) 
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b  

p

⇔ E 

( 

L +1 ∑ 

i =1 

Y t+ i 

) 

= ( L + 1 ) μy + E 

( 

L +1 ∑ 

i =1 

+ ∞ ∑ 

j=0 

˜ ψ j ̃
 ξt+ i − j 

) 

= ( L + 1 ) μy 

⇔ E 

( 

L +1 ∑ 

i =1 

Y t+ i 

) 

= c ( L + 1 ) 

( 

1 −
p ∑ 

j=1 

φ j 

) −1 

We notice here that expected orders at time period t and

expected orders over time period equal to lead-time plus one

time period, are stationary over time and simply functions of

constants c, lead-time L and autoregressive coefficients φ j , j =
0 , . . . . . . , p. Hence, we move on to develop the Average Inventory

level ˜ I t under the three different strategies. 

3.2.1. Derivation of the Average Inventory level under DDI strategy 

Under DDI strategy, the producer optimal Order-Up-To inven-

tory level T DDI 
t is expressed by the below equation. 

T DDI 
t = M t 

DDI + K σ ˜ ξ

√ 

V 

DDI (9a)

Where 

M t 
DDI = E 

( 

L +1 ∑ 

i =1 

f t+ i 

) 

= E [ ( L + 1 ) f t+1 ] 

⇔ M t 
DDI = E 

( 

( L + 1 ) 

( 

μd + 

1 

N 

N−1 ∑ 

k =0 

d t−k 

) ) 

⇔ M t 
DDI = ( L + 1 ) μd + 

1 

N 

E 

( 

N−1 ∑ 

k =0 

d t−k 

) 

⇔ M t 
DDI = ( L + 1 ) μd 

⇔ M t 
DDI = c ( L + 1 ) 

( 

1 −
p ∑ 

j=1 

φ j 

) −1 

And 

 

DDI = MS E DDI 

So, by substituting M t 
DDI and V DDI expressions in (9a) and then

by substituting (9a) expression in (8a) , finally obtain 

˜ I DDI 
t expressed

by the below equation. 

˜ I DDI 
t = 

c 

2 

(
1 − ∑ p 

j=1 
φ j 

) + K σ ˜ ξ

[ 

( L + 1 ) γ0 + 2 

L ∑ 

i =1 

i γL+1 − j 

+ ( L + 1 ) 
2 

( 

γ0 

N 

+ 

2 

N 

2 

N−1 ∑ 

j=1 

j γN − j 

) 

−2 ( L + 1 ) 

N 

L+1 ∑ 

i =1 

N −1 ∑ 

k=0 

γi + k 

] 

1 
2 

(10a)

˜ I DDI 
t in (10a) is a function of constants c and K, autoregressive

coefficients φ j , standard error of orders process σ ˜ ξ
, lead-time L ,

SMA forecast’s order N and auto-covariance function γ j at time pe-

riods j = 0 , . . . . . . , L + N. As the component in brackets in (10a) is

the MS E DDI , we expect that ˜ I DDI 
t behave approximatively in the

same way as MS E DDI . It implies that ˜ I DDI 
t reduces as the SMA or-

der N increases and improves when the lead-time L increases. The

same sensitivity analysis as the one done for MS E DDI is expected.

We move on to develop the approximate expressions for the pro-

ducer’s average inventory, under FIS strategy. 
.2.2. Derivation of the Average Inventory level under FIS strategy 

Under FIS strategy, the producer optimal Order-Up-To inventory

evel T F IS t is expressed by the below equation. 

 

F IS 
t = M t 

F IS + K σ ˜ ξ

√ 

V 

F IS (9b)

here 

 t 
F IS = E 

( 

L +1 ∑ 

i =1 

D t+ i / τt 

) 

≈ c ( L + 1 ) 

( 

1 −
p ∑ 

j=1 

φ j 

) −1 

+ 

T ∑ 

i =0 

( 

L +1+ i ∑ 

j=1+ i 
ψ j 

) 

ξt−i 

And 

 

F IS = MS E F IS 

So, by substituting M t 
F IS and V F IS expressions in (9b) and then

y substituting (9b) expression in (8b) , finally we obtain 

˜ I F IS t ex-

ressed by the below equation. 

˜ 
 

F IS 
t = 

c 

2 

(
1 − ∑ p 

j=1 
φ j 

) + 

T ∑ 

i =0 

( 

L+1+ i ∑ 

j=1+ i 
ψ j 

) 

ξt−i 

+ K σ ˜ ξ
σξ

⎡ ⎣ 

L ∑ 

i =0 

( 

i ∑ 

j=0 

ψ j 

) 2 
⎤ ⎦ 

1 
2 

(10b)

˜ I F IS t in (10b) is a function of constants c and K, autoregressive

oefficients φ j , IMAR coefficients ψ j , j = 0 , . . . . . . , T + L + 1 , stan-

ard error of orders process σ ˜ ξ
, standard error of demand process

ξ , lead-time L , and error terms at time periods j = t, . . . . . . , t − T .

t is clear that ˜ I F IS t improve when lead-time L increase. We expect

hat ˜ I F IS t would also improve when autoregressive order p increase

nd especially when 

∑ p 
j=1 

φ j approach one. We move on to de-

elop the approximate expression for the producer’s average inven-

ory, under NIS strategy. 

.2.3. Derivation of the Average Inventory level under NIS strategy 

Under NIS strategy, the producer optimal Order-Up-To inventory

evel T NIS 
t is expressed by the below equation. 

 

NIS 
t = M 

NIS 
t + K σ ˜ ξ

√ 

V 

NIS (9c)

here 

 

NIS 
t = E 

( 

L +1 ∑ 

i =1 

Y t+ i / ρt 

) 

≈ c ( L + 1 ) 

( 

1 −
p ∑ 

j=1 

φ j 

) −1 

+ 

T ∑ 

i =0 

( 

L +1+ i ∑ 

j=1+ i 
˜ ψ j 

) 

˜ ξt−i 

And 

 

NIS = MS E NIS 

So, by substituting M t 
NIS and V NIS expressions in (9c) and then

y substituting (9c) expression in (8c) , finally we obtain 

˜ I NIS 
t ex-

ressed by the below equation. 
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NIS 
t = 

c 

2 

(
1 − ∑ p 

j=1 
φ j 

) + 

T ∑ 

i =0 

( 

L+1+ i ∑ 

j=1+ i 

˜ ψ j 

) 

˜ ξt−i 

+ Kσ2 
˜ ξ

⎛ ⎝ 

⎡ ⎣ 

L ∑ 

i =0 

( 

i ∑ 

j=0 

˜ ψ j 

) 2 
⎤ ⎦ 

⎞ ⎠ 

1 
2 

(10c) 

˜ I NIS 
t in (10c) is a function of constants c and K, autoregressive

oefficients φ j , IMAR coefficients ˜ ψ j , j = 0 , . . . . . . , T + L + 1 , stan-

ard error of orders process σ ˜ ξ
, lead-time L , and error terms at

ime periods j = t, . . . . . . , t − T . It is clear that ˜ I NIS 
t improve when

ead-time L increase. We expect that ˜ I F IS t would also improve when

utoregressive order p increase and especially when 

∑ p 
j=1 

φ j ap-

roach one. Before moving on to Section 4 , we precise that our

xpected findings in this section will be confirmed by simulation.

hus, we continue in Section 4 , with simulation in order to gen-

ralize conclusions and managerial implications under a general

RMA ( p, q ) demand model. 

. Simulation 

We develop simulation of different ARMA ( p, q ) demand and or-

ers processes and we generate the performance metrics values

nd figures under Matlab 2013b software on windows system. In

his section, we study DDI strategy sensibilities with autoregres-

ive and moving average parameters at first, and with regard to

ead-time and SMA parameters at second. Then, we make a com-

arative study with NIS and FIS strategies. Finally, we study the

mprovement in terms of Bullwhip effect, resulting from using SMA

ethod rather than MMSE method. We note also that all simula-

ions and computations of equations in Section 3 were carried on a

atlab manuscript. Since it is impossible to compute infinitely the

- weights, we compute the first 10 0 0 IMAR coefficients of each

rocess and hence, all obtained results are estimations. 

.1. DDI sensitivity with regard to autoregressive and moving average 

rders and coefficients 

We first simulate ARMA ( p, q ) demand models with different or-

ers values ( p, q ∈ { 0 , 1 , 2 , 4 , 8 } 2 ) while maintaining causality and

nvertibility criteria’s ( φ j and θ j do not add up to one) and taking

nto account the uniqueness of demand processes ( Zhang, 2004 ). In

his first part of simulation, we compute both MS E DDI and 

˜ I DDI 
t , for

he following fixed parameters: c = 10 ; σ 2 
ξ

= 1 ; L = 5 ; N = 12 ; h =
 ; s = 2 . These parameters were randomly chosen but still similar

o literature parameters to ensure comparability for future works. 

Table 2 resumes results for simulating ARMA ( p, q ) demand pro-

esses and calculating the producer’s MS E DDI and 

˜ I DDI 
t , and this for

j ∈ [ −1 , 1 ] ∀ j = 1 , . . . .., p and θ j ∈ [ −1 , 1 ] ∀ j = 1 , . . . .., q . From the

rst three models of the table, when the demand parameters are

xed at p = 1 and q = 0 , we can see that MS E DDI and 

˜ I DDI 
t dete-

iorate on φ1 . This result coincides with the literature findings for

n AR (1) demand process. The same finding is made for the next

hree models of Table 2 ; MS E DDI and 

˜ I DDI 
t deteriorate on θ1 for a

A (1) demand model. The percentage increase of the two indexes

learly differs on AR (p) and MA (q ) models. Indeed, in our simu-

ation, when φ1 increased from 0 . 5 to 0 . 6 , MS E DDI deteriorated by

bout 38% and 

˜ I DDI 
t by about 28% . Facing it, when θ1 increased

rom 0 . 5 to 0 . 6 , MS E DDI deteriorated by about 11% and 

˜ I DDI 
t by

bout 5% . The AR and MA structures clearly influence MS E DDI and
˜ I DDI 
t results and so decision makers must take into account the

tructure of the demand as an important factor for improving their

orecast. 

Important comparison cases take place when we compare

esults for fixed p and variable q or vice versa. Intuitively, we
xpected that, MS E DDI and 

˜ I DDI 
t would increase on p for fixed

 or on q for fixed p. Simulation proved that is not the case.

ndeed, for example, the MS E DDI and 

˜ I DDI 
t results, for the sim-

lated ARMA ( 8 , 1 ) in Table 2 , are lower than ARMA ( 1 , 1 ) ’s

esults. We have the same findings when comparing ARMA ( 8 , 2 )

nd ARMA ( 1 , 2 ) ’s results. It concludes that MS E DDI and 

˜ I DDI 
t would

epend on φ j ’s values ∀ j = 1 , . . . .., p and θ j ’s values ∀ j = 1 , . . . .., q

ather than autoregressive order p and moving average order q . 

Then, for all the rest of simulated ARMA ( p, q ) demand pro-

esses (from model 7 to model 19), we find the same results as for

R (1) and MA (1) processes; i.e. for fixed orders p and q , MS E DDI 

nd 

˜ I DDI 
t deteriorates in a first way, as φi increase while main-

aining { φ
j = 1 , . . . .., p 

j 
 = i 

} and { θ j=1 , ... ..,q } having fixed values; or in

 second way, deteriorates when θi increase while { φ j=1 , ... ..,q } and

 θ
j = 1 , . . . .., q 

j 
 = i 

} are fixed sets. This means that DDI performance

epend on demand time-series structure, and especially would in-

rease as demand is less correlated to delayed demands and error

erms. It would be interesting to study and mathematically gener-

lize how the two performance metrics evolve with regard of φ j 

nd θ j increase. Since this is not a straightforward task, we plan to

ocus on this line for future work. 

.2. DDI sensitivity with regard to lead-time and SMA parameters 

We move on to study the stability of the two performance met-

ics behaviors with regard to N and L . Table 3 presents the consid-

red ARMA ( p, q ) autoregressive and moving average coefficients for

ll the figures set. Here also, we simulated ARMA ( p, q ) processes

y considering φi and θ j that do not add up to one and consider

he following fixed parameters: c = 10 ; σ 2 
ξ

= 1 ; h = 1 ; s = 2 

The figures below ( Figs. 1–4 ) show the 3D-behavior of MS E DDI 

nd 

˜ I DDI 
t for different ARMA ( p, q ) demand processes and for vari-

ble parameters L and ( L = 1 , . . . .., 20 & N = 1 , . . . .., 20 ) . Then, for

ach figure, we present (see Appendix B) the projection on the first

lan and the projection on the second plan. This is done for a bet-

er understanding and analysis of MS E DDI and 

˜ I DDI 
t behaviors. 

The figures set show the robustness of the typical behavior of

S E DDI and 

˜ I DDI 
t performance metrics. The results are shown in

ifferent colors. The SMA parameter N increases as we move from

he blue to the red color. For each color (each fixed N), MS E DDI and
˜ I DDI 
t deteriorate on lead-time L . We note that the improvements

f MS E DDI and 

˜ I DDI 
t on N is logarithmic, but the two performance

etrics descent slopes are different. It means that, as it was no-

iced in the literature, the percentage of amelioration in MS E DDI 

nd 

˜ I DDI 
t is different. Note also that these ameliorations differ for

ow and high values of N. For example, when we look at the pro-

ections on the first plan ( MSE ∼ N ) , the point N = 12 can be con-

idered as a threshold above which the MS E DDI and 

˜ I DDI 
t amelio-

ations are not anymore important, in comparison with low values

f N where improvements are considerable. Mathematically, this

ndings are understandable due to the non-linear form that links

S E DDI to ˜ I DDI 
t . 

From the projections on the second plans ( MSE ∼ L ) , we can

ee that the deterioration of MS E DDI when the lead-time L in-

reases, has an exponential shape. This exponential deteriorate is

uch important as N decreases. For ˜ I DDI 
t level metric, the shape is

ogarithmic for high values of N and becomes linear for low values

f N. These numerical findings confirm our theoretical analysis as

S E DDI and ˜ I DDI 
t are less sensible to L for higher values of N. 

We conclude from this analysis that, for any causal invertible

RMA ( p, q ) demand at the retailer, the producer’s forecast will

e more valuable in terms of MS E DDI and 

˜ I DDI 
t when he uses

igher values of SMA parameter N, and relatively lower values of



72 Y. Tliche et al. / European Journal of Operational Research 274 (2019) 65–77 

Table 2 

MS E DDI and ˜ I DDI 
t results for simulated ARMA ( p, q ) demands. 

Model Autoregressive 

order p

Moving average 

order q 

Autoregressive 

coefficients φ j 

Moving average 

coefficients θ j 

MS E DDI ˜ I DDI 
t 

1 1 0 φ1 = 0 . 400 20.3867 11.5614 

2 1 0 φ1 = 0 . 500 26.7926 14.3894 

3 1 0 φ1 = 0 . 600 36.5808 18.7090 

4 0 1 θ1 = 0 . 400 16.2400 07.4301 

5 0 1 θ1 = 0 . 500 18.50 0 0 07.7789 

6 0 1 θ1 = 0 . 600 20.9400 08,1536 

7 1 1 φ1 = 0 . 400 θ1 = 0 . 051 22.3074 11.8812 

8 1 1 φ1 = 0 . 400 θ1 = 0 . 100 24.2527 12.2041 

9 1 1 φ1 = 0 . 400 θ1 = 0 . 300 33.2078 13.6816 

10 1 2 φ1 = 0 . 400 θ1 = 0 . 300 37.4282 14.4392 

θ2 = 0 . 100 

11 1 2 φ1 = 0 . 400 θ1 = 0 . 300 39.6913 14.8415 

θ2 = 0 . 150 

12 1 2 φ1 = 0 . 400 θ1 = 0 . 300 42.0563 15.2594 

θ2 = 0 . 200 

13 1 4 φ1 = 0 . 400 θ1 = 0 . 300 44.6284 15.8453 

θ2 = 0 . 180 

θ3 = 0 . 060 

θ4 = 0 . 050 

14 2 1 φ1 = 0 . 200 θ1 = 0 . 100 19.6140 10.8756 

φ2 = 0 . 150 

15 4 1 φ1 = 0 . 200 θ1 = 0 . 100 24.1279 15.9735 

φ2 = 0 . 150 

φ3 = 0 . 120 

φ4 = 0 . 100 

16 4 2 φ1 = 0 . 200 θ1 = 0 . 100 26.5067 16.4101 

φ2 = 0 . 150 θ2 = 0 . 065 

φ3 = 0 . 120 

φ4 = 0 . 100 

17 4 4 φ1 = 0 . 200 θ1 = 0 . 100 29.7530 17.0342 

φ2 = 0 . 150 θ2 = 0 . 065 

φ3 = 0 . 120 θ3 = 0 . 060 

φ4 = 0 . 100 θ4 = 0 . 051 

18 8 1 φ1 = 0 . 200 θ1 = 0 . 100 12.8447 8.4158 

φ2 = −0 . 150 

φ3 = 0 . 120 

φ4 = −0 . 100 

φ5 = 0 . 080 

φ6 = 0 . 070 

φ7 = 0 . 060 

φ8 = −0 . 051 

19 8 2 φ1 = 0 . 200 θ1 = 0 . 100 13.8480 8.6012 

φ2 = −0 . 150 θ2 = 0 . 060 

φ3 = 0 . 120 

φ4 = −0 . 100 

φ5 = 0 . 080 

φ6 = 0 . 070 

φ7 = 0 . 060 

φ8 = −0 . 051 

Fig. 1. 3D plots of MS E DDI and ˜ I DDI 
t behaviors under ARMA ( 4 , 1 ) demand model. 
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Fig. 2. 3D plots of MS E DDI and ˜ I DDI 
t behaviors under ARMA ( 8 , 1 ) demand model. 

Fig. 3. 3D plots of MS E DDI and ˜ I DDI 
t behaviors under ARMA ( 8 , 2 ) demand model. 

Fig. 4. 3D plots of MS E DDI and ˜ I DDI 
t behaviors under ARMA ( 8 , 8 ) demand model. 
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Table 3 

Considered ARMA ( p, q ) autoregressive and moving average coefficients. 

Model p q φi θ j 

20 4 1 φ1 = 0 . 25 θ1 = 0 . 2 

φ2 = 0 . 2 

φ3 = 0 . 12 

φ4 = 0 . 09 

21 8 1 φ1 = 0 . 25 θ1 = 0 . 2 

φ2 = 0 . 2 

φ3 = −0 . 12 

φ4 = 0 . 09 

φ5 = −0 . 08 

φ6 = 0 . 07 

φ7 = 0 . 06 

φ8 = −0 . 051 

22 8 2 φ1 = 0 . 25 θ1 = 0 . 2 

φ2 = 0 . 2 θ2 = 0 . 15 

φ3 = −0 . 12 

φ4 = 0 . 09 

φ5 = −0 . 08 

φ6 = 0 . 07 

φ7 = 0 . 06 

φ8 = −0 . 051 

23 8 8 φ1 = 0 . 25 θ1 = 0 . 2 

φ2 = 0 . 2 θ2 = 0 . 15 

φ3 = −0 . 12 θ3 = −0 . 1 

φ4 = 0 . 09 θ4 = −0 . 09 

φ5 = −0 . 08 θ5 = 0 . 08 

φ6 = 0 . 07 θ6 = 0 . 075 

φ7 = 0 . 06 θ7 = 0 . 065 

φ8 = −0 . 051 θ8 = 0 . 05 

Table 4 

MSE and ˜ I t results under the three considered strategies. 

Model MS E NIS MS E DDI MS E FIS ˜ I NIS 
t 

˜ I DDI 
t 

˜ I FIS 
t 

1 67.3756 20.3867 13.5072 19.6936 11.5614 9.4501 

2 138.3996 26.7926 17.4580 33.0452 14.3894 11.1082 

3 300.1029 36.5808 23.1328 62.3794 18.7090 13.6147 

4 11.7600 16.2400 10.80 0 0 7.8951 07.4301 6.2638 

5 13.50 0 0 18.50 0 0 12.2500 8.5608 07.7789 6.3640 

6 15.3600 20.9400 13.80 0 0 9.3215 08,1536 6.4833 

7 74.3786 22.3074 14.7117 21.3331 11.8812 9.5112 

8 81.4330 24.2527 15.9216 23.0569 12.2041 9.5812 

9 113.5408 33.2078 21.3956 31.7447 13.6816 9.9825 

10 131.3007 37.4282 23.8242 37.0936 14.4392 10.0655 

11 140.6645 39.6913 25.0987 40.1215 14.8415 10.1215 

12 150.3507 42.0563 26.4134 43.2234 15.2594 10.1873 

13 166.6726 44.6284 27.6609 48.7798 15.8453 9.9736 

14 4 9.84 96 19.6140 13.0142 17.7593 10.8756 8.5646 

15 82.8049 24.1279 15.8459 34.5483 15.9735 11.6831 

16 90.6387 26.5067 17.1084 37.3469 16.4101 11.6717 

17 99.4028 29.7530 18.4831 41.1695 17.0342 11.4517 

18 14.6534 12.8447 8.8315 10.3757 8.4158 6.9187 

19 15.5426 13.8480 9.5114 10.5792 8.6012 6.9232 
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lead-time L . This characterization is independent of demand’s au-

toregressive and moving average orders ( p, q ) and coefficients φi 

and θ j . 

4.3. DDI strategy with regard to NIS and FIS strategies 

For our comparative study, we considered the same models

simulated in Table 2 and the same fixed parameters: c = 10 ; σ 2 
ξ

=
1 ; L = 5 ; N = 12 ; h = 1 ; s = 2 . Then, we compute each perfor-

mance metric for the three strategies. The results of our simula-

tions are shown in Table 4 . 

From the first look at Table 4 , FIS outperforms both NIS and

DDI in terms of MSE and 

˜ I t and so, for any considered ARMA ( p, q )

of demand process at the retailer. We obtain the same evidence

as previous researches. On one hand, FIS outperforms NIS due to

beneficial effects of information sharing. On the other hand, FIS
utperforms DDI due to MMSE method’s accuracy, which is more

ccurate than SMA method. 

We then focus on comparing DDI to NIS. We first analyze

he reported results in Table 4 by considering the three first

odels. For AR (1) demand models, our findings are similar to

he literature results. DDI strategy outperforms NIS for φ1 large

nough ( φ1 ∈ { 0 . 4 , 0 . 5 , 0 . 6 } ) . Ali et al. (2017) illustrated the

reak-point from which DDI outperforms NIS, and which was eval-

ated at 0 . 24 for L = 1 and N = 6 . 

For MA (1) demand models 4–6, we find that MS E DDI ex-

eeds MS E NIS , despite ˜ I NIS 
t exceeds ˜ I DDI 

t . This finding is an expected

esult because, when the autoregressive order p is equal to 0 , the

emand is only depending on error terms, and the optimal MMSE

ethod outperforms the SMA method as the method effect over-

eight the Bullwhip effect. Hence, NIS is more valuable than DDI

n terms of MSE. We verify this result, which stay valid for any

A (q ) , q > 0 demand models. 

From model 7 to model 19 in Table 4 , we vary the autore-

ressive and moving average parameters p and q and for different

RM A ( p, q ) models, M SE and 

˜ I t kept the same behavior through

he three strategies, but we notice that percentage ameliorations

re different between the two performance metrics. This can be

xplained by the non-linear function, which relies ˜ I t to MSE in

q. (8) . 

Before we go on to next subsection, we briefly recall the ob-

ained results. DDI performance depends on demand time-series

tructure, and especially would increase as demand is less corre-

ated to delayed demands and error terms. When adopting DDI

trategy, supply chain managers should exponentially increase the

MA parameter N in their forecast when lead-time L increases. FIS

lways outperforms DDI and NIS due to information sharing bene-

ts. In terms of MSE, DDI outperforms NIS beyond a certain break-

oint depending on demand time-series structure. In terms of ˜ I t ,

DI outperforms NIS for all simulated demand processes. We go

n to study the Bullwhip effect performance, which separates SMA

o MMSE. 

.4. Simulation on Bullwhip effect 

To numerically illustrate the behavior of the so-called Bullwhip

ffect, we consider as an example, an ARMA ( 2 , 2 ) demand pro-

ess with c = 10 and σ 2 
ξ

= 1 and then we consider different values

f coefficients φ j and θ j , SMA parameter N and lead-time L . We

ainly compute the BW P in order to have an idea on the Bullwhip

ffect accordingly to the employed forecast method. 

Table 5 provides some conclusions on the behavior of Bullwhip

ffect when MMSE and SMA methods are used in the forecasts of

he retailer. The BW P indicator decreases as the autoregressive co-

fficients 

φ1 and φ2 increase. This means that the performance of SMA

ethod, compared to the MMSE method, improves as the de-

and’s auto-regression is more important. In the same way, the

W P indicator decreases as the moving average coefficients θ1 and

2 increase, which means that the performance of SMA method,

ompared to the MMSE method, improve as the demand becomes

ore correlated with delayed errors. Accordingly to the lead-time

 , the BW P indicator increases as L increases. That means that the

erformance of SMA, compared to the MMSE method, deteriorates

n L . Reversely, accordingly to the SMA parameter N, the BWP in-

icator decreases as N increases. That means that the performance

f SMA, compared to the MMSE method, improves on N. 

Through the totality of models in Table 5 , the SMA method out-

erforms the MMSE method in terms of Bullwhip effect ( BW P < 1 ).

his is a strong point for the SMA method, compared to the MMSE

ethod, as SMA method provides a lower variability of orders pro-

esses. 
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Table 5 

Bullwhip effect performance between SMA and MMSE methods. 

Model Autoregressive 

coefficients φ j 

Moving average 

coefficients θ j 

L N BW P 

24 φ1 = 0 . 4 θ1 = 0 . 15 5 12 0 . 1960 

φ2 = 0 . 2 θ2 = 0 . 10 

25 φ1 = 0 . 45 θ1 = 0 . 15 5 12 0 . 1528 

φ2 = 0 . 2 θ2 = 0 . 10 

26 φ1 = 0 . 5 θ1 = 0 . 15 5 12 0 . 1178 

φ2 = 0 . 2 θ2 = 0 . 10 

27 φ1 = 0 . 4 θ1 = 0 . 15 5 12 0 . 1309 

φ2 = 0 . 3 θ2 = 0 . 10 

28 φ1 = 0 . 4 θ1 = 0 . 20 5 12 0 . 1926 

φ2 = 0 . 2 θ2 = 0 . 10 

29 φ1 = 0 . 4 θ1 = 0 . 20 5 12 0 . 1883 

φ2 = 0 . 2 θ2 = 0 . 15 

30 φ1 = 0 . 4 θ1 = 0 . 15 8 12 0 . 2469 

φ2 = 0 . 2 θ2 = 0 . 10 

31 φ1 = 0 . 4 θ1 = 0 . 15 5 15 0 . 1703 

φ2 = 0 . 2 θ2 = 0 . 10 

Table 6 

NIS and DDI results for ARMA ( 2 , 1 ) demand process. 

Adopted strategy NIS DDI % of reduction when 

adopting DDI rather than 

NIS 

MSE 4 9.84 96 19.6140 60.6536 
˜ I t 17.7593 10.8756 63.2948 
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Despite the accuracy of MMSE method, SMA method remains

 convenient mean to reduce the Bullwhip effect as it employs

he less variable demand due to inference. As accuracy implica-

ion (Inventory costs) remains the end measure that must be taken

nto account, rather than accuracy itself ( BW P ) , we propose in the

ext section, a concrete managerial insight, where DDI with SMA

ethod, is much more valuable than NIS with MMSE method. 

. A revenue sharing contract as a practical recommendation 

In this section, we provide a convenient way to show that prac-

ical limitations of DDI strategy can be canceled in the cases where

oth supply chain actors are favorable for negotiation. Let first con-

ider an example where the demand follows an ARMA ( 2 , 1 ) . We

ave already shown the results reported in Table 6 . 

This example shows that adopting DDI strategy by both the re-

ailer and the producer, results in a reduction of nearly 63% in the

roducer’s Average Inventory level, in comparison with NIS strat-

gy. Based on this reduction, the producer can deduce the percent-

ge decrease on his average inventory cost, over a duration of T 

eriods. The producer may propose a contract to the retailer based

n principal agent, or the two actors can negotiate through pro-

osal generation. As example, a revenue sharing contract can be

roposed by the producer, over a certain period T . 
Table 7 

Different situations where DDI is valuable. 

Retailer’s forecast method Costs borne by the retailer fo

Information systems are compa

SMA is already adopted • Costs of data transfer C 1 

➢ DDI is valuable if C 1 < CR

SMA is not yet adopted • Costs of data transfer C 1 

• Costs of SMA method adop

➢ DDI is valuable if C 1 + C 2
If the retailer has already adopted the SMA forecast method,

e only endures the basic costs of data transfer (SMA parameter,

emand process and updated coefficients every time period t). We

enote C 1 the total costs of the retailer, related to data transfer,

ver the period T . 

In the case where the retailer was adopting another forecasting

ethod, the retailer has additional costs related to the dismantling

f the old method and the adoption of the SMA method (time, la-

or and technical requirements). We denote C 2 the total costs of

he retailer related to SMA method adoption, over the period T . 

Information systems of both supply chain actors can be com-

atible. Otherwise, the retailer will bear an additional cost C 3 if he

s the only responsible of systems compatibility. Assuming C i > 0

nd 

∑ 3 
i =1 C 

i < C R , where C R is the average cost reduction at the

roducer over the period T , resulting from adopting DDI strategy,

he producer can propose a revenue sharing contract based on

able 7 . 

Our main recommendation is to adopt the DDI approach if it

as value. Table 7 provides a mean to distinguish when DDI is

aluable. Accordingly to the situation case, the shared revenue SR

s expressed by the below equation. 

R = α

( 

CR −
3 ∑ 

i =1 

C i 

) 

(11) 

here SR is the shared revenue at the end of period T and α is

he fraction of revenue (subject of negotiation) proposed by the

roducer to the retailer. The α coefficient may be determined by

onsidering the bargaining power of actors. Otherwise, 0 . 5 can be

 fair value for both parties. 

This reasoning can be extended to supply chains where there

s more than two actors. Every upstream actor can propose such

 contract to his formal downstream actor in order to adopt DDI

trategy and the overall supply chain will considerably gain in

erms of costs and trust for future cooperative approaches. If we

uppose that all costs at the downstream actor, related to DDI

doption are lower than average cost reduction at the upstream

ctor; moreover, if we suppose that a whole supply chain adopts

DI strategy through such revenue sharing contracts, then every

ctor i within the supply chain, will gain the revenue R i expressed

y the below equation. 

 i = αi −1 ( C R i −1 − C i ) + ( 1 − αi ) ( C R i − C i +1 ) (12) 

here αi −1 and αi are the fractions of revenues proposed respec-

ively, by the upstream actor ( i − 1 ) to actor i , and by the actor i to

is formal downstream actor ( i + 1 ) , C R i −1 and C R i are the average

nventory cost reductions respectively, at upstream actor ( i − 1 )

nd at actor i over the period T , and finally, C i and C i +1 are the total

osts related to DDI adoption, respectively, at actor i and at down-

tream actor ( i + 1 ) ov er the period T . Ther efor e, if we consider

 N -level supply chain, the total supply chain revenue SC _ Re v enue

rom adopting DDI strategy with a revenue sharing contract be-

ween every couple of actors, is expressed by the below equation.
r adopting DDI strategy 

tible Information systems are incompatible 

• Costs of data transfer C 1 

• Costs of systems compatibility C 3 

 ➢ DDI is valuable if C 1 + C 3 < CR 
• Costs of data transfer C 1 

tion C 2 • Costs of SMA method adoption C 2 

• Costs of systems compatibility C 3 

 < CR ➢ DDI is valuable if C 1 + C 2 + C 3 < CR 
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SC _ Re v enue = 

N−1 ∑ 

i =1 

( C R i − C i +1 ) (13)

We conclude this section by recalling our results. When the de-

mand follows ARMA ( p, q ) process, supply chains can considerably

be enhanced by adopting DDI strategy where SMA method is used

for demand forecast. By proposing contracts of revenue sharing,

the actors within a decentralized supply chain may approach

optimal solutions through inventory cost reduction. Other types of

contracts may still be proposed. 

6. Conclusion 

For many years, studying decentralized information structures

was one of the main research topics for both academic and prac-

titioner views. The main question of enhancing the performance

of an overall supply chain, where actors do not want or are un-

able to share information still persist through time. In a decentral-

ized two-level supply chain constituted by a producer and retailer

where demand information is not shared, we study the robustness

of a relatively new phenomenon called Downstream Demand In-

ference (DDI) in a more general demand context. This strategy al-

lows an upstream actor to infer the demand arriving at his for-

mal downstream actor who uses Simple Moving Average (SMA)

method in his forecast instead of using optimal Minimum Mean

Squared Error (MMSE) method. DDI allows the upstream actor to

improve its forecast Mean Squared Error (MSE) and Average Inven-

tory level ( ̃ I t ) , which directly lower inventory costs. 

This paper is a follow-up study to previous work with the pur-

pose of generalizing existing results through theoretical analysis of

a model based on some strong assumptions. This paper general-

izes MSE and 

˜ I t expressions for causal invertible ARMA ( p, q ) de-

mand processes under DDI strategy, No Information Sharing (NIS)

and Forecast Information Sharing (FIS), computes the Bullwhip ef-

fect generated by employing SMA method and provides an indi-

cator, which measures the performance separating SMA to MMSE

method. In a simulation section, the paper analyses the behavior

of the three performance metrics with respect to Simple Moving

Average (SMA) parameter N, lead-time L , demand’s autoregressive

order p and coefficients φi , and moving average order q and coef-

ficients θ j . 

The implications of our paper are relevant. Supply chain man-

agers can introduce the use of SMA forecast method for a more

generalized ARMA ( p, q ) demand model. First, the paper concludes

that DDI performance depends on demand time-series structure,

and especially would increase as demand is less correlated to de-

layed demands and error terms. Second, the paper concludes that

supply chain managers, in the case where DDI is adopted, should

exponentially increase the SMA parameter N in their forecast when

lead-time L increases. Third, the paper confirms that FIS always

outperforms DDI and NIS due to information sharing benefits. The

value of information sharing is incontestable and FIS remains the

optimal strategy for supply chain actors. Fourth, in terms of MSE,

DDI outperforms NIS beyond a certain break-point depending on

demand time-series structure. In terms of ˜ I t , DDI outperforms NIS

for all simulated demand processes. Fifth, the paper concludes that

despite the accuracy of MMSE method, SMA method remains a

convenient mean to reduce the Bullwhip effect as it employs the

less variable demand due to inference. Finally, the paper presents a

revenue sharing contract as a practical recommendation in a man-

agerial accessible manner in order to adopt DDI strategy within

supply chains. 

We conclude our paper with lines for future researches. First,

DDI strategy can still be evaluated through other forecasting meth-

ods. Second, it would be interesting to establish a general mathe-
atical relation, which allows determining the break-point of any

RMA ( p, q ) , p > 0 model, from which DDI is more valuable than

IS strategy, in terms of MSE. Finally, our study may still be gen-

ralized to an ARIMA ( p, d, q ) model. 

upplementary materials 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.ejor.2018.09.034 . 
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